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Abstract

Distributed acoustic sensing underlies an increasingly

important class of sensor network applications, from habi-

tat monitoring and bioacoustic census to security applica-

tions and virtual fences. VoxNet is a complete hardware

and software platform for distributed acoustic monitoring

applications that focuses on three key goals: (1) rapid de-

ployment in realistic environments; (2) a high level pro-

gramming language that abstracts the user from platform

and network details and compiles into a high performance

distributed application; and (3) an interactive usage model

based on run-time installable programs, with the ability to

run the same high level program seamlessly over live or

stored data. The VoxNet hardware is self-contained and

weather-resistant, and supports a four-channel microphone

array with automated time synchronization, localization,

and network coordination. Using VoxNet, an investigator

can visualize phenomena in real-time, develop and tune on-

line analysis, and record raw data for off-line analysis and

archival. This paper describes both the hardware and soft-

ware elements of the platform, as well as the architecture

required to support distributed programs running over a

heterogeneous network. We characterize the performance

of the platform, using both microbenchmarks that evaluate

specific aspects of the platform and a real application run-

ning in the field.

1. Introduction

Acoustic sensing is a key component in a broad range

of sensor network applications, including gunshot localiza-

tion [23], weapon classification [28], acoustic intrusion de-

tection [5], biological acoustic studies [17, 30, 3], person

tracking [25], speaker localization [8], and smart confer-

ence rooms [29]. Existing work has described specific al-

gorithms, and in some cases custom hardware. This paper

is about a flexible hardware and software solution that can

potentially target any of these applications, evaluated based

on a specific bio-acoustic application.

The specific application we consider relates to the prob-

lem of automated census of in-situ animal populations us-

ing bio-acoustic signals such as animal calls [6, 27, 9, 16].

This application requires sophisticated localization, signal

enhancement, and classification algorithms to process the

acoustic time-series data, as well as statistical algorithms

to process the resulting animal call event traces. In some

cases automated census may require combining acoustic

detections with other sensor inputs such as imagers trig-

gered based on timely results from the acoustic data pro-

cessing pipeline. While algorithms have been developed

for census and population measurement for many specific

species [17, 6, 27, 9, 16], for some species and environ-

ments this is quite challenging, and general solutions re-

main elusive.

Because acoustic monitoring applications present many

challenges that are not readily addressed by existing plat-

forms [20, 19], previous work in acoustic applications has

typically required significant investment in platform devel-

opment [28, 17, 5]. Several key challenges complicate the

development and deployment of acoustic applications:

• Acoustic data is generated and processed at high rates,

placing a heavy computational burden on the sensor

platform. Even with large memories and fast 32-bit

processors, the processing pipeline must be highly op-

timized to perform well.

• Developing on-line processing algorithms generally

requires pilot studies to collect sample data. These pi-

lot studies are often similar to the eventual deployment

in terms of the logistical efforts and hardware function-

ality required.



• While some acoustic applications require on-line pro-

cessing, others require retrieval of complete traces, or

some balance between the two, perhaps dynamically

configurable at run-time. Both on-line processing and

storage contribute to system load and impact platform

requirements.

The design of our platform, called VoxNet, stems

from considering these observations in the context of bio-

acoustics applications, with a particular focus on animal

tracking and census problems, but with the potential to be

applied in other domains thanks to a flexible, deployable

hardware platform and a high-performance distributable

programming interface.

Software flexibility is required to support multiple con-

current applications, and in particular to allow reconfigu-

ration and tuning of applications running in the field. For

example, concurrently with continuously running an ani-

mal call localization application, a researcher might want

to archive raw data or test out a new detection algorithm

without disturbing the running system. To achieve this we

implemented an interface for VoxNet that allows new pro-

grams to be installed in a running system without inter-

rupting existing applications. Distributed VoxNet applica-

tions are written as a single logical program, abstracting the

programmer from the details of the network and particu-

lar hardware platforms. These programs can operate over a

combination of live and static data, residing in a distributed

system of sensors and backend servers. This model enables

users to tune and further develop applications during pilot

deployments, and enables the system to be used as an in-

teractive measurement tool while it is deployed. This is im-

portant for many short-term scientific deployments, because

it allows a scientist to immediately explore newly observed

phenomena. Installing program updates at run time is also

useful in other contexts such as security monitoring.

Usually, greater run-time programmability incurs a cost

in performance. To address this, VoxNet builds on prior

work designing the WaveScript [10] language and compiler,

which we extended to support the sensor interfaces and net-

work functionality of VoxNet. VoxNet is the first embed-

ded target for the WaveScript compiler, and developing the

VoxNet backend motivated many new features and opti-

mizations. Implementing our animal localization applica-

tion using the WaveScript programming language and op-

timizing compiler results in a 30% reduction in processor

load and 12% in memory usage, compared with the hand-

coded C implementation used in a previous version of the

application (see Section 5).

Thus, the main contributions of this work are:

1. To develop a platform capable of rapid deployment in

realistic environments for bioacoustic applications;

2. To provide a high level programming interface that ab-

stracts the user from platform and network details and

compiles into a high performance distributed applica-

tion; and

3. To define an interactive usage model based on run-time

installable programs, with the ability to run the same

high level program seamlessly over live or stored data.

2. Related work

Our related work is concerned with both platforms

for network tasking, and processing frameworks for high-

frequency domains (acoustic, seismic).

2.1. Platforms and architectures

Tenet [14] advocates a tiered networking approach to in-

network processing, where less capable platforms have

clearly defined roles and are tasked by more powerful plat-

forms. The reasoning behind this type of architecture is that

the complex aspects of a computation should stay on more

powerful platforms, because it is less costly and error prone

than push the computation to less capable platforms.

Tenet’s goals differ from ours. In the reference imple-

mentation, Tenet nodes are Mica2/TelosB class devices, and

micro servers are Stargate class processors. In contrast, our

lowest-tier sensor nodes must be much more capable than

Mica or TelosB motes to deal with high-frequency data, and

we do not enforce a boundary between processing tiers. In

fact, one of our aims is to make this boundary more trans-

parent, so it can feasibly adapt to changes in application and

environment.

VanGo [15] is a system which is designed to capture high

frequency phenomena using devices which are constrained

not only by processing capability, but also network commu-

nication bandwidth. A focus of VanGo is therefore to sup-

port data reduction after suitable application-specific char-

acterization.

VanGo forms a program as a linear chain of filters, de-

signed to reduce data from its original form into events of

interest. These filters can be enabled or disabled, and there

are a library of different filters, such as FIR, event detection

and classification. Again, our work focuses on a different

class of devices than VanGo, and the programming model

provided is, accordingly, much more general. Whereas

VanGo is limited to a linear chain of filters, VoxNet allows

an arbitrary dataflow graph and operators are not limited to

filter semantics.

Mate/ASVM [24] provides a framework for application

specific virtual machines (ASVMs), to allow developers to

created customized runtimes which are application depen-

dent. Network reprogramming is a key focus of virtual ma-

chines such as Mate. In our target domains, as well, phe-

nomena are often not well-characterized, and application re-



quirements may vary over the lifetime of the network. How-

ever, we choose native code compilation for our programs

in order to achieve the level of performance required for in-

tensive signal processing. Because VoxNet has a relatively

fast wireless network, uploading new binaries on demand is

tractable.

The Acoustic ENSBox [13] is an ARM-based embedded

platform for rapid development and deployment of dis-

tributed acoustic sensing applications. The VoxNet node

hardware is based on the ENSBox hardware design, al-

beit greatly improved. Software is developed for the ENS-

Box using the Emstar [11] framework, and provides ser-

vices such as time synchronization [7] and self-localization.

However, multi-hop IP networking support is not provided

on the ENSBox, and so multi-hop communication is pro-

vided through flooding interfaces, which does not scale

well. This also means TCP connections cannot span mul-

tiple hops. Several deployments have used the Acoustic

ENSBox and its related software support to record time syn-

chronized acoustic data for offline bioacoustic analysis, or

run on-line event detectors. However, due to the heavy load

placed on the embedded CPU, and the latency incurred in

writing to flash memory, it is not possible to run both of

these applications in tandem. It was also not possible to

perform other signal processing operations whilst the on-

line event detector was running. Due to the optimizations

of WaveScript, VoxNet can enable more functionality whilst

incurring less CPU and memory overhead.

2.2. Processing tools and frameworks

There are many signal processing tools to carry out

acoustic research. However, the selection of systems that

support real-time processing, or embedded and distributed

processing, is much more limited.

General purpose frameworks. Matlab [2] provides a gen-

eral purpose mathematical environment and programming

language and includes many specialized “toolboxes”, such

as for signal processing. Labview [1] is a similar appli-

cation. Labview allows data acquisition and processing

through a dataflow language. Applications are built using

a graphical interface, enabling non-programmers to write

acquisition and processing software, and visualize the re-

sults. However, neither Matlab nor Labview are well suited

to implementation in a distributed system of sensors, be-

cause they are too inefficient to be implemented on embed-

ded hardware and they do not have good support for im-

plementing distributed applications. The VoxNet platform

represents our initial steps towards creating a distributed,

bioacoustic system that is easy to use and productive for the

scientist as Matlab.

2.3. Applications

Acoustic-based census is a viable option because many

mammals and birds produce loud alarm calls, territo-

Figure 1. The packaged VoxNet node, shown

in deployment at the Rocky Mountain Biolog-
ical Laboratory, August 2007.

rial calls, and songs that are species-specific, population-

specific, and often individually identifiable [26]. As such,

these vocalizations can be used to identify the species

present in an area, as well as in some cases to count indi-

viduals. Acoustic monitoring for census has been shown to

be important for cane-toad monitoring [6], elephants [27],

birds [16] and whales [9]. Although the variety of species

and habitats makes these problems difficult to solve in a

general way, we believe that our platform and programming

environment can be used as a substrate upon which all of

these applications could be built.

3. Motivating Application

To make the motivation for VoxNet more concrete, we

consider a specific use case with which we are familiar. In

previous work, we developed the Acoustic ENSBox plat-

form [13] and developed an application for localizing mar-

mots, a medium-sized rodent native to the western United

States [3]. In this deployment effort we worked closely with

field biologists who are interested in studying rodent alarm

call patterns to better understand their behavior. Working

with real users and a concrete application enabled us to re-

fine our objectives, both in terms of the capabilities of the

system and the desired user experience.

In our usage scenario, a team of biologists want to detect

marmot alarm calls and determine their location at the time

of the call, relative to known burrow locations. Because

alarm calls are a response to predator activity, they are typ-



ically quite rare and unattended operation is desirable. Al-

though for some applications simple recording and off-line

processing would be sufficient, in this case it is important

that the system process the data on-line to produce timely

results. When biologists are present in the field, timely re-

sults from the system enable them to record additional data

about the current conditions, e.g. what caused the alarm,

and which animal raised it. Future versions of the system

might automate this enhanced data collection in the event

of a detection.

Since biologists are the “users” in our scenario, it is cru-

cial that the system be easy for them to deploy, start up,

and configure. The VoxNet node hardware is a compact,

self-contained and weather-resistant package, as shown in

Figure 1. To support non-expert users the VoxNet software

is designed to be be easy to configure: a self-localization

system [13] supplies fine-grained estimates of location and

array orientation, a self-organizing ad-hoc network provides

IP routing back to the gateway, and an easy-to-use web-

based interface assists in troubleshooting. The goal of a

VoxNet deployment is to work “out of the box” (with only

minimal trouble shooting), after node placement and power

up. The user can then install an alarm call localization ap-

plication from the control console and visualize the results.

The algorithm for localization, described in [3], first pro-

cesses a stream of audio data through a “fast path” detec-

tor to identify possible alarm calls, estimates bearing to the

caller from multiple points (using the Approximated Max-

imum Likelihood or AML algorithm [3]), and finally fuses

those estimates together to estimate the caller’s location.

To implement this on the VoxNet platform, this algorithm

is expressed as a WaveScript program, a logical dataflow

graph of stream operators connected by streams. The distri-

bution of operators to nodes is made explicit by program an-

notations. Once constructed, the program is compiled and

pushed out to the network to run; results are streamed back

to data storage components and operational statistics stream

back to the console. The data flowing on a stream can be

visualized by connecting a visualizer to a viewable stream

endpoint.

From our experiences with field scientists, we have

found that even in instances where detection and localiza-

tion can be done on-line, the scientists also want to record

the raw data for future processing. While this desire may

diminish as they gain confidence in data reduction algo-

rithms, it will always be important in the testing phases of

any new algorithm, as well as for interactive use to replay

and re-analyze recent data. To address these concerns we

have implemented “spill to disk” functions by adding new

WaveScript operators that can save a stream to persistent

storage for future retrieval. In a VoxNet deployment, net-

work limitations mean that raw data can only be saved in

a node’s local storage (and as such can still be accessed by

a distributed WaveScript program). After the deployment,

stored raw data can be dumped to a large server for archival

purposes; the same programs that run in a deployment can

be run against the archived raw data.

4. The VoxNet Platform

The VoxNet platform consists of an embedded node plat-

form and a software platform that supports distributed appli-

cations, as described in Section 3. Figure 2(b) is a diagram

of the VoxNet system architecture, a framework in which

programs can be written, compiled, and disseminated, and

the results can be archived and visualized. In this architec-

ture, a user runs a program by submitting it through a user

interface at the control console. The control console discov-

ers the capabilities of the nodes in the network, and assigns

portions of the Wavescript program to different nodes based

on program annotations. It then compiles and optimizes

each distributed component of the program for the appro-

priate platforms, and disseminates the compiled program

components to the network of embedded VoxNet nodes and

backend service machines. Results and diagnostic data are

returned to the control console for display and visualiza-

tion; a PDA may also be used to visualize data while in the

field. Streams of results and offloaded raw sensor data can

be archived to a storage server and later processed off-line,

using the same user interface.

The next two subsections describe the hardware and soft-

ware components of VoxNet in greater detail.

4.1. Hardware

The basic node hardware, shown in Figure 1 and rep-

resented by the block diagram in Figure 2(a), is a revision

of the Acoustic ENSBox prototype [13]. The VoxNet node

shares the same main processor board as the original Acous-

tic ENSBox, based on the Sensoria Slauson board, a 400

MHz PXA 255 processor with 64MB memory, 32MB on-

board flash and two PCMCIA slots containing a 4 chan-

nel sound card and an 802.11 wireless card. VoxNet nodes

currently use an ad-hoc mesh network using 200 mW out-

put 802.11b cards and 5.5 dBi antennas. These cards have

a maximum range of approximately 200m in line-of-sight

conditions. VoxNet nodes currently consume 7.5 W con-

tinuous when running, and have an 8-hour lifetime from an

internal 5400mAh Li-ion battery.

Storage Co-processor. Hardware limitations of the main

processor board precludes the use of large storage devices.

To address this, VoxNet contains an auxiliary processor, the

Gumstix Connex 400 with the NetCF I/O board, that is con-

nected to the Slauson by wired Ethernet. The Gumstix hosts

a large Compact Flash card that can archive data streams

from the Slauson. Since the Gumstix board runs the same

VoxNet software as the Slauson, a WaveScript program can
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Figure 2. VoxNet hardware and system architecture. WaveScript programs invoked at the command
console are compiled and disseminated to the network of sensors; returning results are visualized
and archived to a storage server. In cases where the deployment is disconnected from the backend

services, results and raw data is archived to node-local storage and transferred when the nodes are
brought on-line.

easily be configured to offload portions of the computation

to the Gumstix.

Supervisory Co-processor. Duty cycling is an important

feature, given the 8-hour lifetime of VoxNet nodes. VoxNet

includes a Mica2 [19] that is always on, linked to the Slau-

son board via a serial line. The Mica2 manages the indica-

tor LEDs, external attention button, GPS, accelerometer and

temperature sensors, and controls power to the other com-

ponents of the system, including the Gumstix, Slauson, the

audio output power amplifier and audio input preamplifiers.

Software on the Mica2 allows the Slauson to power the sys-

tem down for a specified interval and awaken from a button

press. Currently the Mica2 radio is not used, but future soft-

ware versions might implement over-the-air wakeup via the

CC1000 radio.

Packaging. The VoxNet node is a self-contained unit in-

stalled in an 1150 Pelican case, with the microphone ar-

ray integrated into the lid of the case. All external con-

nectors are weather-resistant and sealed. The microphone

modules detach and pack inside the box for shipping. The

total weight of a VoxNet node is 2.3 kg.

VoxNet nodes have been used in several deployments

over the last year in which weather conditions were unfa-

vorable, including a rain-forest in southern Mexico and a

mountain meadow in Colorado. The microphones are pro-

tected by a waterproof latex cap and an artificial fur wind

screen. During both deployments the nodes survived re-

peated exposure to precipitation.

4.2. Software

The VoxNet software is made up of three components,

which we describe separately: Wavescope, which handles

compiling, optimizing, and running an application on a dis-

tributed collection of nodes; control and visualization tools,

which provide a collection of features important for track-

ing resource availability, troubleshooting and usability in

the field and in off-line computations; and VoxNet platform

drivers and services that adapt the general-purpose compo-

nents listed above to the specifics of the VoxNet platform.

4.2.1. Wavescope and WaveScript

The Wavescope [10, 12] project is an ongoing effort to

develop a stream processing system for high-rate sensor net-

works. This project includes multiple stream-processing ex-

ecution engines for various platforms, united through their

common use of a custom programming language, Wave-

Script. The WaveScript language is described in more detail

in previous work. For our purposes here we will briefly

outline its features and provide a single code example—

namely, the main body of our marmot detection and local-

ization program shown in Figure 3.

WaveScript is a stream-processing language. Like most

stream-processing languages, WaveScript structures a pro-

gram as a set of communicating stream operators (also

called kernels or filters). In WaveScript, the user writes a

“script” that composes together stream operators to form a

graph. Thus the variables in the code of Figure 3, are bound

to stream values, and the functions build stream dataflow

graphs. The script to compose a stream graph can include

arbitrary code.

A single script includes the full application code that is

distributed over multiple tiers of the network. In the exam-

ple code, the netSendToRoot function inserts a place-

holder in the stream graph that marks where the graph is

split by the compiler into node and server programs. In fu-

ture work we may address automatic decomposition of a

stream graph across network tiers. Note, that in this ex-

ample, the node sends both a stream of raw detections and



(ch1,ch2,ch3,ch4) = ENSBoxAudio(44100)

// Perform event detection in frequency domain
freq = fft( hanning( rewindow(ch1, 32)))

scores = marmotScore(freq);

events = temporalDetector(scores);

// Use events to select audio segments
detections = sync(events, [ch1,ch2,ch3,ch4])

// Now we create a stream of booleans indicating
// whether the queue is too full for local AML.
queuefull =

stream map(fun (percent) { percent > 80 },
AudioQueueStatus())

// Then we use that boolean stream to route
// detections into one of two output streams.
(iffull,ifempty) = switch(queuefull, detections)

// If full, AML on server, otherwise node
aml1 = AML( netSendToRoot(iffull))

aml2 = netSendToRoot( AML(detections))

// Once on the server, regardless of how we
// received AML results we process them.
amls = merge(aml1,aml2)

clusters = temporalCluster(amls)

// All AML results in a cluster are merged
// to form a likelihood map.
map = fuseAMLs(clusters)

// We route these likelihood maps back to the
// user (”BASE”) for real-time visualization.
BASE ← map

Figure 3. A script for composing a graph of
stream operators for the full marmot applica-

tion (node- and server-side).

processed detections back through the network. Detections

are processed using the AML algorithm [3]. Which path is

chosen depends on whether the node has the free time to ex-

ecute the required AML computation locally, which in turn

is a function of the state of the data acquisition queue. We

will return to this topic below.

A unique aspect of WaveScript is that it also allows one

to write custom stream operators, inline, in the same lan-

guage that is used for the script itself. A trivial example of

this appears in the code when we use stream map to apply

a user defined function over the values in a stream. Other

operators allow stateful processing of streams, and can be

used to write custom, high performance signal processing

operators, when needed.

Although it has always been intended for sensor net-

works, the prior published results of Wavescope have been

aimed at high performance stream processing using desktop

or server-class hardware. In porting Wavescope to VoxNet,

we, for the first time, began to address some of the unique

considerations encountered on a resource-constrained sen-

sor node platform. As our sensor nodes do not possess pro-

cessor cores, began by choosing the single-threaded ML-

based WaveScript backend. (Other backends generate C

code but include some overhead for multiprocessing sup-

port.) This WaveScript backend uses an aggressive, whole-

program optimizing Standard ML compiler (MLton) to gen-

erate machine code. In addition to the good baseline per-

formance of this compiler, the WaveScript implementation

ensures that extremely intensive kernels of computation (for

example, Fourier transforms) are out-sourced to the appro-

priate C or Fortran implementations (such as FFTW or LIN-

PACK).

Further, the WaveScript backend we chose provides a

simple model for executing dataflow graphs that is appro-

priate to our hardware and our target applications. It per-

forms a depth-first traversal of the dataflow graph; emitting

data from an operator is a simple function call into the code

for the downstream operator. This is the right model for

bioacoustic applications, as the data passed on streams is

relatively course grained (e.g. windows of signal data), and

because intra-node concurrency is not an issue.

To combine WaveScope with VoxNet, we leveraged

WaveScript’s foreign function interface (FFI) to integrate

our audio hardware and networking layer. In particular, we

wrote C-code that acquires data and pushes it to the com-

piled WaveScript code, where it is viewed as a stream. Our

driver for the audio data-source use a separate thread to poll

the audio hardware and queue data for the compute thread

(WaveScript). We also decided to publish the status of the

queue itself (percent full) as a streaming input to the Wave-

Script program. This enables the WaveScript program to

make adaptive decisions about, for instance, whether or not

to process data locally or ship it off (see Figure 3).

Taken together, Wavescope and VoxNet show that it is

possible to program a signal processing system efficiently

using a high-level programming model. Our system work in

integrating VoxNet and WaveScope need not be repeated for

subsequent users or deployments; they need only utilize the

WaveScript programming interface. This interface exposes

high-level stream and signal processing operators, and in

addition, all WaveScript user code takes advantage of au-

tomatic memory management and high-level ML-like lan-

guage features—while maintaining excellent performance.

4.2.2. Distribution, Control and Visualization

VoxNet implements network streams and a range of con-

trol and visualization tools to support the dissemination of

applications and the display and management of results.

Since prior work on Wavescope had focused on the lan-

guage and single-node engine performance [10, 12], the

VoxNet platform motivated significant new development,

including a network stream subscription protocol, a re-

source discovery service, a control console interface, ap-

plication dissemination, and visualization tools.

Network Stream Subscription. To support distributed pro-

gramming in VoxNet we implemented Wavescope network

streams, a network stream abstraction based on a publish-



subscribe model and designed to operate over multihop

wireless networks. A Wavescope network stream closely

mirrors the semantics of local Wavescope streams, in that

they are reliable and allow fan-out to multiple readers.

To support reliability we built this mechanism atop TCP

streams, and added an automatic reconnect and application-

layer acknowledgment to guarantee reliability in the face of

disconnection. We also implemented timers that kill and

restart the TCP connection in the event that it stalls due to

repeated packet losses stemming from poor signal quality or

temporary routing problems. The network stream abstrac-

tions are used for all types of communication in the VoxNet

system, including visualization, log messages, control mes-

sages and pushing new compiled programs.

Although 100% reliable streams are required to preserve

the semantics of local Wavescope streams, they are not al-

ways a practical solution. Consequently we have imple-

mented extensions to this model that allow for certain types

of “lossy” streams. A Wavescope network stream buffers all

data until acked at the application level by each connected

client. However, the buffer is limited to a fixed upper bound

(defaulting to 512KB) and further data queued will cause

stream elements to be dropped from the head of the queue.

Another important lossy semantics is called “always re-

quest latest”. In this model, all new clients begin receiving

only new data, and no buffered data is kept. In this seman-

tics, the TCP stream will guarantee that all data is received

during a given connection, but some data may be dropped

if the connection is forced to restart. The raw data archiver

uses this type of stream, because in the event of a disruption,

the raw data will quickly overrun any in-memory buffer, and

because the wired connection to the Gumstix is very reli-

able.

While the current implementation uses end-to-end TCP

sessions, in other application contexts and at larger scales

this may no longer be adequate. Further work is required

to experiment with other communication mechanisms in-

cluding “split-TCP” and DTN approaches. We also expect

that other semantic models will arise as we further develop

VoxNet applications.

Discovery Service and Control Console. The control con-

sole is a centralized point of contact for the entire VoxNet

network, that discovers nodes, installs applications and

tracks resource usage, error logs, and profiling statistics. It

serves as a mediator between users who want to install a

program and the VoxNet distributed system, and hosts all

appropriate compiler tools and scripts. The discovery ser-

vice hosted on the control console maintains a list of ac-

tive VoxNet nodes and backend server machines, and tracks

their capabilities and resource availability. When VoxNet

nodes or servers start up, they connect to the control con-

sole at a well-known address and register with the network.

When a user submits an application for propagation to

Figure 4. Example screenshot of time-series

data in our visualizer.

the VoxNet system, the control console compiles it for the

appropriate architectures and pushes the compiled compo-

nents out to nodes currently in its discovery list. The cur-

rent implementation pushes each binary separately to each

node using end-to-end TCP connections. This is accept-

able for small networks, but as these systems scale, other

mechanisms such as viral propagation or methods similar

to Deluge [18] will be needed.

Control Tools. To control our VoxNet deployment we de-

veloped the Wavescope shell, a text command-line interface

to the control console, similar to the UNIX shell. This shell

allows a user to submit new programs and see log messages

and results streaming back from the network. Individual

commands can be pushed to the nodes, either individually

or as a broadcast, to start and stop the engine or to control

other aspects of their behavior. To help visualize the net-

work, the shell provides a “scoreboard” showing the current

status of each node registered via the discovery protocol.

In the current implementation the Wavescope shell is inte-

grated with the control console software, but future versions

will separate those functions.

Stream Visualization. Visualization of intermediate data

and results is a critical component of making VoxNet us-

able. Visualization clients are Java applications that can run

on any network-connected client machine, such as a lap-

top or a PDA. The Java visualizer connects to a Wavescope

published stream and represents the data visually in real

time. We are using the JFreeChart graphing package to

build these visualization tools.

Currently we have developed several visualizers for dif-

ferent types of stream data, including the simple time-series

visualizer shown in Figure 4 and a polar plot visualizer. The

current implementation requires that the visualizer compo-

nent exactly match the stream data type, meaning that in

general an adaptor must be implemented in Wavescript to

convert source data to the appropriate type stream; we are

investigating developing a visualizer that can read an arbi-

trary marshaled wire protocol. Since the control console

maintains a list of all currently available streams from each

node in the network, interested clients can request this list



and thus browse for streams of interest.

Spill to Disk. Support for persistent storage is crucial to

many uses of the VoxNet system, whether because of lim-

ited RAM buffer space, or to support offline or delayed

analysis of raw data. The spill to disk component saves

properly time-stamped raw data streams to the large flash in

the VoxNet node or to disks in the case of backend storage

servers. In the VoxNet node, the Slauson adds an extra oper-

ator to its running dataflow program that publishes the raw

data as a network stream. A subscription client on the Gum-

stix co-processor reads that data over the network and mar-

shals it to files on the flash, properly annotated with global

timestamps. In our experiments we have found that VoxNet

can continuously archive 4 channels of audio at 44.1 KHz

while concurrently running other applications (see Figure 5

in Section 5 for details).

4.2.3. VoxNet Platform Drivers and Builtins

In addition to the reusable components described above,

there are many important platform elements that are specific

to VoxNet. Many of these are hardware drivers, diagnostic

software, and glue components that are too detailed to be

described here. We mention below two of the more complex

and important features specific to the VoxNet platform.

Time Synchronization and Self-localization. VoxNet in-

herits time synchronization and self-localizing system de-

veloped for the Acoustic ENSBox [13], and adds additional

glue to integrate these features into the Wavescope engine.

Reference Broadcast Synchronization [7] is combined with

a protocol to propagate global time from a node synced to

GPS [22]. Timestamps in VoxNet systems are converted

to global time before being transmitted over the network or

saved to persistent storage.

IP Routing. VoxNet implements IP routing from each node

back to a gateway node using a user-space implementation

of DSR [21], that dynamically installs entries into the ker-

nel routing table. DSR can establish routes between any two

nodes on-demand, however in our field experiments we only

needed multihop routes along the tree between nodes and

the gateway. VoxNet uses 802.11 radios in ad-hoc mode,

and enables a prism2 chipset specific Psuedo-IBSS mode

to eliminate network partitions due to different parts of the

network converging on different ad-hoc cell IDs. To elim-

inate the complications in configuring client devices to use

Pseudo-IBSS, the gateway forwards between the Pseudo-

IBSS network and a normal wired or wireless lan.

5. Performance and Evaluation

In this section, we investigate our platform’s perfor-

mance in-situ with respect to our motivating application,

and also perform some microbenchmark evaluation. Our

microbenchmarks are intended to validate of our choice of
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Figure 5. Resource usage comparison of
the identical event detectors, implemented in
Emstar and Wavescope.

using Wavescript and the Wavescript compiler opposed to a

hand-coded C implementation.

VoxNet’s approach allows us to blur the processing

boundary between sink and node. Our in-field experimenta-

tion highlights the trade-offs that can be made with respect

to in-network processing.

5.1. Microbenchmarks

Memory consumption and CPU usage. We compared the

resource footprint (CPU and memory usage) of the event

detector application described in section 3 with our previous

hand-coded, Emstar implementation [3]. Figure 5 shows a

breakdown of the relative components involved in the event

detection implementation—the detector itself and the data

acquisition, in terms of memory and CPU usage. These fig-

ures are the mean values of one minute’s analysis of CPU

and memory usage using the Linux command top (20 data

points).

Figure 5 compares the footprint of the Wavescope appli-

cation to that of the Emstar version. The graph shows that

the total overhead of the Wavescope version is over 30%

less in terms of CPU (87.9% vs 56.5%) and over 12% less

memory (20.9% vs 8.7%).

Spill to disk. Because the Wavescope version uses fewer

CPU and memory resources, additional components can run

concurrently with the detection application. To demonstrate

this, we verified that “spill to disk”, a commonly used com-

ponent that archives a copy of all input data to flash, could

run concurrently with our detection application. We ran the

event detector program and spill to disk simultaneously for

15 minutes, monitoring the CPU and memory usage on the

Slauson. We also logged the data transfer rates between the

Slauson and Gumstix boards and the buffered queue sizes
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for the incoming data stream at one second intervals. The

results in Figure 6 show that the mean data transfer rate

from Slauson to Gumstix over the stream was 346.0 KB/s,

which is in line with the required rate of 344.5 KB/s. This

also accounts for the timestamping overhead of the raw data

segments (8 bytes per segment). The third and sixth bars

in Figure 5 show that the overall resource overhead of run-

ning both spill to disk and an event detector on the node

is 80.7% CPU and 9.5% memory (taken from 20 consecu-

tive top measurements). Given that the spill to disk feature

was impossible to implement in Emstar due to resource con-

straints, we see that VoxNet’s improvements in efficiency

enable a corresponding improvement in functionality.

On node processing comparison. Providing the capability

for on-node data processing is an important part of VoxNet.

To further test our platform’s processing capability, we mea-

sured the time taken to compute a direction of arrival esti-

mate using the Approximated Maximum Likelihood (AML)

algorithm [3]. In our motivating application, this is an in-

tensive processing operation.

We compared the performance of a C implementation of

AML (previously used in an Emstar-only system) to a cor-

responding Wavescope implementation. We invoked both

implementations of the AML computation on the output

stream of a Wavescope event detection program and timed

how long they took to complete (measuring the start and

finish of the AML function call in both cases). For both

implementations, 50 detections were triggered to make 50

AML calls. Table 1 shows the min/mean/median/max com-

parison of processing times. For comparison, figures are

shown for the same AML computation running on an x86

laptop-based version of the VoxNet node [4], with 256MB

Min Mean Median Max

C (node) 2.4430 2.5134 2.4931 2.7283

Wavescope (node) 2.1606 2.4112 2.4095 2.5946

C (x86) 0.0644 0.0906 0.0716 0.2648

Wavescope (x86) 0.0798 0.1151 0.0833 0.5349

Table 1. WS vs C AML processing times

Figure 7. A map of the deployment area. The

gateway was 200m away from the nodes (im-
age courtesy of google earth).

RAM and a P4 2GHz processor.

We see comparable performance between C and Wave-

cript generated C in both ENSBox and x86. We expect the

performance of Wavescript generated code to be at best as

efficient as hand coded C, so this result is encouraging. Both

implementations used the same O3 optimization flag, as to

ensure a fair comparison.

5.2. Insitu Application Tests

In August 2007 we tested the VoxNet platform in a de-

ployment at the Rocky Mountain Biological Laboratory

(RMBL) in Gothic, CO. We deployed the event detection

and localization application previously mentioned in sec-

tion 3. Over the course of several days, eight nodes were

deployed during the day and taken down at night. We main-

tained a consistent geographic topology in each case, span-

ning the 140m by 70m area (2.4 acres) shown in Figure 7.

We positioned a gateway node 200m away from the near-

est node in the system (node 104). From this position, the

control server accessed the nodes via a wired connection

on the gateway. The control server ran a Wavescope shell

to control the nodes, as well as the AML and postion esti-

mation parts of the marmot localization application. It also

logged all messages generated within the network and sent

over control streams.

During our deployment time, we performed tests with

two different sized antennae—standard and extended.

Throughout all of these tests, we found that two of the nodes



Figure 8. Routing tree for multi-hop testing.

were consistently better-connected to the gateway than oth-

ers (nodes 113 and 104). We speculate that this was a func-

tion of favorable geographical position relative to the gate-

way in terms of line of sight and elevation.

Our deployment was very much an exploratory exercise,

allowing us to understand more about the behavior of our

system in-situ, and help inform the kind of latencies we

could expect for data transfer, detection processing and po-

sition estimation—all important aspects to help the scien-

tist’s observations at a higher level.

Goodput measurement. On two separate days, we ran

goodput tests, in which a command requesting all nodes to

simultaneously send a user-specified payload of data was

issued at the control server. Each node measured the time

when it began to send, and inserted a timestamp the first

8 bytes of the payload. A second timestamp was recorded

at the sink when it completed reception of the payload. We

used these time differences as an indicator of both the good-

put (the transfer rate of application level data) and the la-

tency of each transfer. Our tests took place in both a single

hop network (with seven nodes) and a multi-hop network

(with eight nodes).

We chose data payload sizes which were indicative of the

raw detection and processed AML data traveling over the

network (32 KB and 800 bytes respectively). This was de-

signed to roughly mimic the behaviour of the network upon

all nodes simultaneously triggering a detection and trans-

mitting, albeit with slightly more controlled transmission

times. In our one-hop test, we used a larger antenna on the

gateway to achieve this one-hop network; the standard size

antenna could not reach all nodes in a single hop. Getting

a single hop network was useful as it allowed us to test the

network over a larger area but without any problems aris-

ing from multi-hop communication. The graph in Figure 9

shows the min, mean and max latency of the time taken by

each node to transmit 32 KB. These figures were taken from

16 individual data requests.

We expected to see similar results for each node, which

is generally the case, although it is clear that nodes 104 and

113 have smaller overall latencies than other nodes, consis-
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tent with our observation of their better overall connectivity

to the gateway.

Our second goodput test was carried out in an eight node

multi-hop network with up to three hops. The routing tree is

shown in Figure 8. Statistics were gathered over 15 distinct

tests, over a 287 second period (around 4 3/4 minutes). The

data sent by each node per request was 32000 bytes. We ex-

pected to see goodput performance degrade with hops, and

this is especially obvious in Figure 10. In fact, it is so pro-

nounced that we see clear differences in latency between

the different branches on the routing tree. The two nodes

that route through node 104 (112 and 115) have lower la-

tencies than the three that route through node 113 (108, 109

and 100), and node 109 (which is three hops away from the

sink) incurs the most latency.

General operating performance. To examine regular ap-

plication performance, we ran our marmot event detection

application over a 2 hour period (7194 seconds), during

which time the nodes in the network were triggered 683

times (in total) by marmot vocalization. Only 5 out of 683

detections were dropped (a 99.3% success rate). Although

we expected 100% data reliability, we observed drops due

to the overflow of our 512K network buffers during times

of network congestion and high detection rates.

During one deployment day, a rain storm occurred whilst

the nodes were running. Raindrops hitting the microphones

and node cases caused the event detectors to constantly trig-

ger. We expected that the network would become heavily

congested, and that nodes would drop data as their trans-

mit queues increased. Over the course of just 436 seconds

(7 1/4 minutes), 2894 false detections were triggered, for a

rate of around 6/second network-wide.

Each node dropped a significant amount of data during

the raining period, only successfully sending around 10%
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of data generated to the sink (10.44MB). Despite the drops,

our system continued to run, showing that it can deal with

overloading in a graceful manner.

On node vs sink processing. In Section 5.1 we demon-

strated that VoxNet nodes are indeed capable of processing

the AML part of the call localization algorithm locally, al-

though at a much slower rate relative to a typical laptop: the

VoxNet nodes process an AML in 2.4112 seconds on aver-

age, versus around 0.0833 seconds on an x86 laptop. How-

ever, the result of processing a detection using AML is only

800 bytes in size, compared to a 32 KB raw detection. The

difference in speed is therefore traded off by a reduction in

network cost, as well as by the parallel speedup intrinsic to

running the AML on a distributed set of nodes.

In Section 4.2.1 we showed that a WaveScript program

can be written to adaptively process data locally or centrally,

depending on certain conditions, with the intent of lowering

the overall localization latency by reducing network costs.

While this is an interesting idea, the conditions under which

it is beneficial to process the data locally depend on whether

the speedup in network transmission balances out the poten-

tial increase in latency due to local processing.

To evaluate this, we would ideally compare the goodput

transfers of 32 KB and 800 byte data transfers in an identical

network. Unfortunately, our 32 KB dataset in the multi-hop

topology was gathered opportunistically, and we failed to

get a corresponding 800 byte data during this period.

However, we did gather measurements of 800 byte trans-

fers in a 1-hop topology. We use this data to get a rough

estimate of the trade off between computing the AML al-

gorithm locally or at the sink, by estimating the expected

latency. In 154 transfers from seven nodes, the mean trans-

fer time was 0.0212s (min 0.008s, max 0.0607s). Based on
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Figure 11. The latency trade-off between
transmitting 32 KB and 800 bytes.

conservative estimates of packet loss and TCP timer behav-

ior, we can use these results to formulate an estimate of the

multihop performance.

We model the expected latency E(x) of an 800 byte trans-

fer using the equation shown in formula 2. Since the MTU

is 1500 bytes, our payload will easily fit into a single packet,

therefore we need only model the expected latency of a sin-

gle segment being sent in an established TCP stream, rather

than a more complex TCP model.

We assume an exponential backoff starting at 1 second

for our TCP retransmit timer, and a conservative estimate

of packet loss probability P of 1/50, independent for each

hop that a packet must travel over. Our expected loss rate

for N hops is

P (N) = 1 − (1 − P )N (1)

and, using the formula for a geometric series the expected

latency E(x) (assuming a mean latency per hop H = 0.0212)

is

E(x) = N · H + P (N)/(1 − 2 · P (N)) (2)

The results of this comparison are shown in Figure 11.

We see that the measurements of the delays incurred by

the 32 KB transfers scale approximately linearly with the

number of hops, as we saw in Figure 10. In contrast,

the single packet transfers, even accounting for packet loss

and retransmission, arrive with very low latency, but in-

cur the fixed 2 second latency of the AML computation.

Incidentally, we note our 1/50 packet loss probability is

conservative—the in-situ data collected from our 1-hop net-

work didn’t see even one backoff retransmission in 150

sends. A repeated test in a similar outdoor two-hop network

saw just 6 retransmissions in 700 sends.



From this particular graph we conclude that there is a

definite trade-off point for adaptation of processing at be-

tween 2 and 3 hops. At this point, a node would substan-

tially benefit from performing its processing locally. We

intend to investigate this trade-off more fully is subsequent

work, as we feel it is an compelling problem.

6. Conclusion

In this paper we have described VoxNet, a platform for

acoustics research, and applied it to a specific bioacoustics

application. We described the architecture of the hardware

and software components of the platform, and validated our

approach by comparing against previous related work. We

showed that in using WaveScript as our language of choice,

our deployed application can consume less CPU and mem-

ory resources and provide more functionality, such as spill

to disk. These factors are important for the users of our

platform, as we want to enable high-level programming and

rich interactions with the network, but without loss of raw

performance. We believe VoxNet has a general appeal to a

variety of high-frequency sensing applications, and in par-

ticular, will lower the barrier of entry for bioacoustics re-

search.
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