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Ontogenetic variation of heritability and
maternal effects in yellow-bellied marmot
alarm calls

Daniel T. Blumstein1,2, Kathy T. Nguyen1 and Julien G. A. Martin1

1Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles,
CA 90095-1606, USA
2The Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA

Individuals of many species produce distinctive vocalizations that may relay

potential information about the signaller. The alarm calls of some species

have been reported to be individually specific, and this distinctiveness

may allow individuals to access the reliability or kinship of callers. While

not much is known generally about the heritability of mammalian voca-

lizations, if alarm calls were individually distinctive to permit kinship

assessment, then call structure should be heritable. Here, we show conclus-

ively for the first time that alarm call structure is heritable. We studied

yellow-bellied marmots (Marmota flaviventris) and made nine quantitative

measurements of their alarm calls. With a known genealogy, we used the

animal model (a statistical technique) to estimate alarm call heritability. In

juveniles, only one of the measured variables had heritability significantly

different from zero; however, most variables had significant maternal

environmental effects. By contrast, yearlings and adults had no significant

maternal environmental effects, but the heritability of nearly all measured

variables was significantly different from zero. Some, but not all of these

heritable effects were significantly different across age classes. The presence

of significantly non-zero maternal environmental effects in juveniles could

reflect the impact of maternal environmental stresses on call structure. Regard-

less of this mechanism, maternal environmental effects could permit kinship

recognition in juveniles. In older animals, the substantial genetic basis of

alarm call structure suggests that calls could be used to assess kinship and,

paradoxically, might also suggest a role of learning in call structure.
1. Introduction
Animal vocalizations contain a plethora of potential information that may

include information about the signaller’s size [1,2], arousal level [3–6], identity

[7–9], age [8,10,11] and sex [12]. Indeed, mammalian alarm calls have been

shown to be individually distinctive, and this distinctiveness permits receivers

to obtain information about the reliability or potential kinship of callers

(yellow-bellied marmots, Marmota flaviventris [13]; great gerbil, Rhombomys
opimus [14]; Belding’s ground squirrels, Spermophilus beldingi [15]; putty-

nosed monkeys, Cercopithecus nictitans [16]; baboons, Papio cynocephalus
ursinus [17]; Thomas langurs, Presbytis thomasi [18]; cotton-top tamarins,

Saguinus oedipus [19]; meerkats, Suricata suricatta [20]). While such individuality

may not necessarily be used by receivers [20,21], in many cases it is. Most of the

hypotheses about the value of individually distinctive alarm calls centre on

the role they may play in reliability assessment [22], and none have tested

the key assumption about kinship, despite many studies that show that alarm

calling may be a kin-selected trait [23].

Distinctiveness for individual recognition [24,25] and group or family iden-

tity vocal signatures [26] could be obtained by social learning, a mechanism that

does not require a genetic basis of vocalization structure. Three orders of birds

have the ability to learn vocalizations [27], but learning vocalizations is much

less common in mammals [28,29]. However, bats [30,31], pinnipeds [32],

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.0176&domain=pdf&date_stamp=2013-03-06
mailto:marmots@ucla.edu
http://dx.doi.org/10.1098/rspb.2013.0176
http://dx.doi.org/10.1098/rspb.2013.0176
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org/
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Figure 1. Illustration of the nine acoustic measurements made on the
(a) spectrum (bandwidth, maximum amplitude and peak frequency),
(b) spectrogram (start low frequency, start high frequency, end low frequency
and end high frequency) and (c) waveform (rise time and duration) of yellow-
bellied marmot alarm calls, used to study the heritability thereof. (Online
version in colour.)
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cetaceans [33,34], elephants [35] and ungulates [36] are capable

of some degree of vocal learning, which may include the pro-

duction of group identity signatures [26] and increasing

individual discriminability [24,25].

However, if individuals benefit from producing indivi-

dually distinctive alarms calls, we might expect heritable

individual differences in call structure [37]. More generally,

we might expect that when individuals benefit from discrimi-

nating between kin and non-kin, heritable variation in

vocalizations should be selected [38,39]. In species where

social groups are formed of relatives, heritable signals can

effectively indicate group affiliation and may be used to

determine the level of relatedness between individuals [37].

Such heritable traits should be relatively canalized.

Remarkably, given the relatively canalized nature of

mammalian vocalizations, relatively little is known about

their heritability. A genetic basis of vocalizations has been

shown in several mammals (evening bats, Nycticeius humeralis
[39]; noctule bats, Nyctalus noctula [40]; gibbons, Hylobates
spp. [41,42]; wolves, Canis lupus, and dogs, Canis familiaris
[43,44]; Belding’s ground squirrels [15]). However, the herit-

ability of alarm calls was never formally estimated and

other potential sources of variation were not identified.

Using the animal model, a quantitative technique that

permits the decomposition of variance components [45,46],

we estimated the heritability, maternal and permanent

environment effects of a set of acoustic features in individually

distinctive yellow-bellied marmot alarm calls [13]. Previous

work has demonstrated that marmots are capable of discrimi-

nating among individuals based on their calls alone [11], and

that assessing perceived caller reliability is likely to be the

key factor that has selected for the evolution of discrimination

abilities [47]. However, if discriminating among kin is an

important function of individually distinctive calls, we would

expect these individually distinctive factors to be heritable

[38,39]. Also, the value of identifying kin might vary over

time and be based on caller age. Thus, we analysed heritability

separately for juvenile marmots and older animals to gain

insights into how the importance of heritability and the

maternal environment varied over time.
2. Material and methods
We studied free-living marmots in the East River Valley in

and around the Rocky Mountain Biological Laboratory (RMBL)

in Gunnison County, CO, USA (3885702900 N, 10685900600 W;

elevation approx. 2890 m) [48]. Marmots at this site have been

studied continuously for the past 51 years [48] and their alarm voca-

lizations have been studied for over a decade [13,23]. Marmots are

facultatively social and mothers may recruit daughters to form

matrilines [48]. Thus, many animals find themselves in multi-age

groups comprising relatives. Social groups and social group mem-

bership are known [49]. Detailed methods of marmot trapping and

marking can be found in a paper by Armitage [50].

We measured 3250 alarm calls (1706 juvenile alarm calls and

1544 calls from yearlings and adults) from 235 juveniles and 118

yearlings and adults recorded during 650 calling events when

marmots were trapped between 2002 and 2010. Individuals were

from 203 litters born from 78 mothers. Detailed methods of

the recording, editing and normalization of calls can be found

elsewhere [13], but the goal was to record five alarm calls from

each bout of calls emitted when a marmot called when it was

trapped. We calculated spectrograms and the average spec-

trum using the bioacoustics program CANARY (spectrogram: fast
Fourier transformation size¼ 1024, overlap ¼ 99.61%, filter

bandwidth ¼ 1066.32 Hz, frequency grid resolution¼ 3.07 Hz,

clipping level¼280 dB; average spectrum: fast Fourier transforma-

tion size¼ 512, overlap¼ 99.8%, filter bandwidth ¼ 533.16 Hz,

frequency grid resolution ¼ 86.13 Hz, clipping level ¼ 280 dB).

We then quantified nine quantitative measurements (figure 1):

rise time and duration (measured from the waveform), F0 peak

frequency, F0 maximum amplitude, F0 bandwidth (from the spec-

trum: measured at the base of the peak when taking only the top

40 dB into account) and F0 start high frequency at maximum

amplitude (hereafter ‘start high’), F0 start low frequency at

maximum amplitude (‘start low’), F0 end high frequency at maxi-

mum amplitude (‘end high’), and F0 end low frequency at

maximum amplitude (‘end low’; all measured from the spectro-

gram), which previous studies had shown to be individually

distinctive [13].

We constructed a molecular genealogy where we used 12

microsatellite loci to determine maternity and paternity (details

in [49,51]). Using the animal model [45,46], as implemented by

ASREML [52], we decomposed the variance of alarm calls into

its additive genetic, permanent environment (environmental

effects on an individual’s phenotype that are constant across

repeated measures on that individual [53]), maternal environ-

ment (the effects on offspring phenotype that are shared by

offspring of the same mother [53]), year and event (which reflects

the consistency of calls during one recording event) components.

We included sex and day of the year as fixed effects to control for

sexual dimorphism and time variation. First, analyses were run

separately for juveniles and a class that included yearlings and

adults. This is biologically justified because yearling and adult

alarm calls are more similar to each other than are juveniles,

http://rspb.royalsocietypublishing.org/
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which are quite acoustically distinctive, given their small body size

[13]. We included an age effect as a fixed effect for the adult and

yearling models to correct for potential differences between the

age classes. We also fitted bivariate models that modelled juvenile

and adult–yearling alarm calls as the two dependent variables. To

test if variance components were different between the two age

classes, a likelihood ratio test between bivariate models with and

without constraints of equality of variance components for age

classes was used. Residual and event covariance were fixed to 0

owing to the structure of the data. Year covariance was also fixed

to 0 owing to convergence error. Additive genetic, permanent

environment and maternal covariance were also set to 0 if one

variance parameter was bound to zero in the univariate models.

To ensure that differences in variance components between the

two age classes were not due to scale differences, traits were

standardized by their standard deviation after accounting for the

fixed effect. Data are archived at www.eeb.ucla.edu/Faculty/

Blumstein/MarmotsOfRMBL/data.html.
 20130176
3. Results
Calling bout (i.e. event) accounted for a significant amount of

variation in each of the measured variables (figure 1 illus-

trates acoustic measurements) both in juveniles and in

yearlings and adults (table 1). For two variables, juveniles

had significantly more variation explained by calling bout

than did yearlings and adults (table 2). In juveniles, the per-

manent environment explained significant variation in four

of the measured variables: duration, bandwidth, end high

and end low (table 1), and in yearlings and adults, the perma-

nent environment explained no significant variation in any of

the variables. However, permanent environment estimates

were not significantly different between juveniles and yearlings

and adults (table 2). No significant additive genetic effects

were found in juveniles, except for start low frequency (24.7%)

(table 1 and figure 2a). Maternal environmental effects in

juveniles explained significant variation in five variables: peak

frequency (20.6%), bandwidth (10.5%), start high (17.5%),

start low (17.1%) and end low (8.3%) (table 1 and figure 2a).

By contrast, in yearlings and adults, significant additive genetic

effects were found for all variables, except duration and end low

frequency (table 1 and figure 2b). Only two of these variables,

however, were significantly different as a function of age class

(table 2). No maternal environmental effects were found in

yearlings and adults (table 1), and four of the estimates were

significantly different from juveniles (table 2).

The effects of fixed effects are reported in the electronic sup-

plementary material, appendix S1. However, in juveniles, there

was a difference between males and females for all traits except

rise time, maximum amplitude and bandwidth, and there was

a strong significant effect of day of the year in all the traits. For

yearlings and adults, four traits (peak frequency, bandwidth,

start high and start low) had significant sex differences. Day

of the year affected call duration, maximum amplitude and

start high frequency. Yearlings differed from adults for some

traits: rise time, peak frequency, bandwidth, start high, start

low, end high and end low.
4. Discussion
We found, for the first time, evidence of heritable alarm call

attributes, but only in older marmots. By contrast, we

found significant maternal effects only for juvenile calls.
While not all of these estimates were significantly influenced

by age, estimates were significantly different from zero. The

lack of significance between age classes in significant var-

iance components may have resulted from the considerable

variation in them as well as the relative effect size of ‘age’.

Nonetheless, we have identified ontogenetic changes in the

relative importance of heritability and maternal effects in

alarm calls, and this result provides new insights into the

potential utility and evolution of alarm calls.

Juvenile alarm calls have substantial and significant

maternal environmental effects, but no significant heritability.

The absence of heritability in juvenile alarm calls could be

proximately associated with the strong effect of the day of

the year. In their first year, marmots undergo rapid structural

growth, and must put on two to three times their emergence

body mass to have a good chance of surviving their first

winter [55]. Vocalizations are influenced by physical structures,

such as the size and shape of the vocal tract [56], suggesting

strong acoustic consequences of rapid juvenile growth.

If maternal environmental effects in juvenile alarm calls

were the result of vocal learning, perhaps to permit optimal

transmission through the environment (i.e. the acoustic adap-

tation hypothesis [57]), then we would expect them to be

retained into adulthood. Because they are not present in

older marmots, our results suggest that we should look for

something unique in the maternal environment and with a

reversible effect as a putative mechanism.

From a proximate perspective, arousal level can influence

both the probability of uttering alarm calls [58] and the

structure of these vocalizations [59,60]. Juveniles born into

particularly stressful environments (either because of social

or predator stresses) might be exposed to more pre-natal

and/or neonatal levels of glucocorticoids than juveniles

born into less stressful environments [61]. Mammary glands

are target organs for glucocorticoids, and thus they can be

transferred to juveniles from their mother’s milk [62]. Vari-

ation in the pre-natal and neonatal stress environment is a

putative mechanism to explain significant maternal environ-

mental effects, after controlling for variation explained by

maternal (and paternal) genetic effects. Thus, maternal

stress could explain variation in juvenile alarm call structure.

Indeed, this maternal effect could be the mechanism that

permits mothers to recognize their offspring despite the lack

of significant heritable variation. Marmots of all ages also

have individually distinctive vocalizations [13], and this pro-

vides another mechanism that would permit mothers to

discriminate among their own from and other females’

pups. By contrast, other mammals (e.g. bats [39]) have a

much more stable vocal structure over time.

From a functional perspective, the tighter link between

environmental risks/stresses and call structure may be adap-

tive. Adults respond more to calls from juveniles than older

animals [11], and marmots and meerkats respond more to

calls with nonlinear acoustic attributes in them [63,64], acous-

tic features that may be produced under duress [65]. Thus,

the variation produced by this putative maternal environ-

mental mechanism may be adaptive in that it helps create

calls that function to help juveniles born into a stressful

environment (e.g. an environment with predators that stressed

the mother) obtain what they need from older animals.

In older marmots, the absence of maternal environmen-

tal effects combined with the significant (and in some cases

substantial) heritability of acoustic traits suggests that alarm

http://www.eeb.ucla.edu/Faculty/Blumstein/MarmotsOfRMBL/data.html
http://www.eeb.ucla.edu/Faculty/Blumstein/MarmotsOfRMBL/data.html
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Figure 2. Proportion of variation explained by year, event, permanent environment ( pe2) maternal environment (me2) and additive genetic (h2), variation for alarm
call structure in (a) juvenile and (b) yearling and adult yellow-bellied marmots. All estimates are from animal models fitted in ASREML. Significant ( p , 0.05) effects
are denoted by an asterisk.

Table 2. Likelihood ratio test and significance (n.s., non-significant) of the differences in variance components (additive genetic, h2; permanent environmental,
pe2; maternal, me2; event; and year effects) between juveniles and yearlings/adults for alarm calls structure in yellow-bellied marmots. Likelihood ratio tests
were assessed between bivariate models with and without variance components constrained to be equal. Significance was assessed using 1 d.f.; however, it
should be noted that this could provide a conservative estimate [54]. Significant values are in italics.

trait h2 pe2 me2 event year

rise time (ms) 6.679** 0.140 (n.s.) 0.020 (ns) 4.600* 0.080 (n.s.)

duration (ms) 2.046 (n.s.) 0.226 (n.s.) 0.746 (ns) 4.866* 0.106 (n.s.)

peak frequency (kHz) 0.720 (n.s.) 0.020 (n.s.) 6.201** 0.340 (n.s.) 0.220 (n.s.)

maximum amplitude (dB) 3.852* 20.008 (n.s.) 0.008 (n.s.) 0.212 (n.s.) 0.632 (n.s.)

bandwidth (kHz) 1.308 (n.s.) 0.402 (n.s.) 6.054** 0.280 (n.s.) 0.088 (n.s.)

start high (kHz) 1.400 (n.s.) ,0.001 (n.s.) 6.012** 0.460 (n.s.) 1.160 (n.s.)

start low (kHz) 2.140 (n.s.) 1.330 (n.s.) 5.252** 0.088 (n.s.) 0.244 (n.s.)

end high (kHz) 1.025 (n.s.) 0.241 (n.s.) 1.278 (n.s.) 0.578 (n.s.) 1.067 (n.s.)

end low (kHz) 1.118 (n.s.) 0.036 (n.s.) 2.170 (n.s.) 2.827 (n.s.) 1.308 (n.s.)

*p , 0.10, **p , 0.05.
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calls could be used to assess identity of the caller and kinship.

Related marmots have calls that are more similar than

non-related marmots.

If the changes in maternal effects with age classes

suggested an absence of learning, as previously discussed,

learning could nevertheless explain the observed ontogenetic

pattern of heritability. If it took some time for animals to

properly learn their calls, and they learned from relatives,

resemblance with relatives would increase over time and
this would be seen in a greater heritability estimate in older

animals. Future experimental studies would be required to

demonstrate precisely what, if anything, was learned.

It is conceivable that alarm calls are important in kin rec-

ognition, but this initially seems unlikely, given that they are

rarely uttered. Kin recognition in social context, such as mate

selection or territoriality, could not reliably depend on alarm

calls that were rarely uttered in response to predators. More

probable is that identifying the relationship of the caller is

http://rspb.royalsocietypublishing.org/
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involved in caller reliability assessment [22]. The assumption

here is that calls from relatives contain more potentially valu-

able information than calls from non-kin, perhaps because

receivers can trust relatives. This is possible if animals are

more likely to warn relatives than non-relatives [66]. While

the assumption about the information content of calls from

relatives versus non-relatives remains to be tested, our results

identified a potential mechanism for kin recognition in alarm

calls. Our work has thus opened a new avenue to investigate

in the function and evolution of alarm calling.
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