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Abstract

Between-individual variation in phenotypes within a population is the basis

of evolution. However, evolutionary and behavioural ecologists have mainly

focused on estimating between-individual variance in mean trait and

neglected variation in within-individual variance, or predictability of a trait.

In fact, an important assumption of mixed-effects models used to estimate

between-individual variance in mean traits is that within-individual residual

variance (predictability) is identical across individuals. Individual hetero-

geneity in the predictability of behaviours is a potentially important effect

but rarely estimated and accounted for. We used 11 389 measures of docil-

ity behaviour from 1576 yellow-bellied marmots (Marmota flaviventris) to

estimate between-individual variation in both mean docility and its pre-

dictability. We then implemented a double hierarchical animal model to

decompose the variances of both mean trait and predictability into their

environmental and genetic components. We found that individuals differed

both in their docility and in their predictability of docility with a negative

phenotypic covariance. We also found significant genetic variance for both

mean docility and its predictability but no genetic covariance between the

two. This analysis is one of the first to estimate the genetic basis of

both mean trait and within-individual variance in a wild population. Our

results indicate that equal within-individual variance should not be

assumed. We demonstrate the evolutionary importance of the variation in

the predictability of docility and illustrate potential bias in models ignoring

variation in predictability. We conclude that the variability in the pre-

dictability of a trait should not be ignored, and present a coherent approach

for its quantification.

Introduction

Phenotypic variance is a central concept in ecology and

evolution as it is the material on which selection can

act (Roff, 2002). Phenotypic traits vary among species,

among populations and among individuals within pop-

ulations (Roff, 2002). In addition, for traits expressed

multiple times, the phenotype could vary even within

an individual (Roff, 2002). Until recently, within-indi-

vidual variance has been mainly attributed to either

environmental plasticity and explained by differences

in the environment (Pigliucci, 2005; Nussey et al.,

2007), or measurement error and white noise (Pigliucci,

2005; Westneat et al., 2014). Within-individual variance

not explained by the general environment is often

assumed to be homogeneous across individuals. How-

ever, between-individual variation in within-individual

variance could exist and be under selection (Hill &

Mulder, 2010; Westneat et al., 2014) and thus should

not be ignored.
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Existing studies of between-individual variation focus

on decomposing the variance in the mean of a trait in

its between-individual and within-individual (i.e. resid-

ual) components (Kruuk, 2004; Dingemanse &

Dochtermann, 2013). In some cases, between-indivi-

dual variation in environmental plasticity, or individ-

ual-by-environment interactions noted IxE, is also

estimated (Fig. 1a; e.g. Dingemanse & Dochtermann,

2013; Nussey et al., 2007). However, the residual

within-individual variance is always assumed to be the

same across individuals (e.g. Wilson et al., 2009; Dinge-

manse & Dochtermann, 2013). Indeed, the main

assumption of mixed-effects models, a statistical

approach widely used to estimate between-individual

variance both at the phenotypic and genetic level, is

that the residual variance is identical across individuals

(Pinheiro & Bates, 2000; Wilson et al., 2009; Dinge-

manse & Dochtermann, 2013). The residual within-

individual variance could however differ among

individuals at both genetic and phenotypic level. As an

example, Fig. 1a illustrates between-individual varia-

tion in phenotypic plasticity, whereby the phenotype of

three individuals has a different relationship with envi-

ronmental conditions, that is IxE. Figure 1b shows the

residuals of the regression for each individual in

Fig. 1a, that is the residual within-individual variance.

It is clear from Fig. 1b that the individuals also differ in

the amount of variation in their residuals, for example

circles are more spread apart than crosses, illustrating

between-individual variation in residual within-indivi-

dual variance. This variance component could have

both an environmental and a genetic basis.

The importance of between-individual variation in

within-individual variance has been recognized in evo-

lutionary ecology (Mulder et al., 2007) and behavioural

ecology (R�eale & Dingemanse, 2009; Stamps et al.,

2012; Westneat et al., 2013). In agriculture production,

the level of variation in yield is of prime importance for

growing, processing and consumption of foods, thus

leading researchers to investigate the within-genotype

variation in yield traits within standardized environ-

ments (Hill & Mulder, 2010). In behavioural ecology,

the within-individual variance of a trait is often the big-

gest component of variance (Westneat et al., 2014) sug-

gesting that further investigation is required. Variation

in within-individual variance of behaviours has been

identified for song repertoire size in birds (Byers &

Kroodsma, 2009), antipredatory behaviours (Stamps

et al., 2012) and parental care (Westneat et al., 2013).

Despite a rising awareness of the importance of varia-

tion in within-individual variance in both evolutionary

and behavioural ecology (R�eale & Dingemanse, 2009;

Hill & Mulder, 2010; Stamps et al., 2012; Westneat

et al., 2014), empirical studies remain limited.

One of the problems associated with the study of

variation in within-individual variance is lexical. For

traits measured repeatedly under the same environ-

mental conditions, multiple terms (such as intra-

individual variability, individual stability, relative spe-

cialization, consistency, predictability or uniformity)

have been used as synonyms to refer to within-indivi-

dual or within-genotype variance (R�eale & Dinge-

manse, 2009; Stamps et al., 2012; Cleasby et al., 2015;

Sae-Lim et al., 2015). Following, Cleasby et al. (2015),

we use predictability to refer to within-individual vari-

ance in a trait measured repeatedly in the same envi-

ronment.

An additional problem for the study of the variation

in predictability of behaviours is that the few existing

estimates used different, noncomparable approaches

(R�eale & Dingemanse, 2009; Stamps et al., 2012; West-

neat et al., 2013; Cleasby et al., 2015). Some authors
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Fig. 1 Example of plasticity (a) and residual within-individual variation (b) for three individuals. Each individual is represented by a

different colour and point type. (a) Illustrates between-individual variation in plasticity, with each individual responding differently to

environmental changes. The lines represent the average individual response, whereas the points are the observations. (b) Represents the

residuals around the mean environmental response for each individual in panel (a). The dotted line is 0. Thus, (b) Illustrates the between-

individual variation in residual within-individual variance.
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have advocated the use of statistical models to predict

an individual’s expected behaviour for multiple obser-

vations. The standard deviation of the differences

between the predictions and the observed behaviours

(i.e. model residuals) for each individual then provides

an estimate of the variation within an individual

(Stamps et al., 2012). This method however suffers from

different statistical limitations including potential anti-

conservatism due to the large amount of uncertainty in

the estimation of the residuals not accounted for in

subsequent analyses of within-individual variation.

Others suggested to use diversity indexes, such as rich-

ness, evenness or Shannon Wiener index, to estimate

variation in behaviours for each individual (Ram &

Gerstorf, 2009). However, the method is limited to dis-

crete behaviours and highly dependent on which diver-

sity index is used. Cleasby et al. (2015) presented a

method to adequately estimate variation in predictabil-

ity of a trait using double hierarchical generalized linear

models, DHGLM (Lee & Nelder, 2006). DHGLM allows

the concurrent estimation of between-individual differ-

ences in a trait, or variation in the mean, and in its

predictability, while correcting for environmental effects

(Cleasby et al., 2015). This type of model is an exten-

sion of a mixed-effects model including fixed and

random effects on both the mean and the within-

individual, that is residual, variance of a trait (Lee &

Nelder, 2006; Cleasby et al., 2015). In addition, this

approach permits the estimation of comparable parame-

ters of predictability among traits, environments and

species (Hill & Mulder, 2010; Cleasby et al., 2015).

Double hierarchical generalized linear models can not

only be used to estimate between-individual variance

in predictability, but, paired with a quantitative genetic

approach, the variance in predictability can also be

decomposed into its additive genetic and environmental

components (R€onneg�ard et al., 2010; Sae-Lim et al.,

2015). Studies in animal breeding have estimated the

additive genetic basis of within-genotype variance for

multiple productivity-related traits such as litter size

(Hill & Mulder, 2010) or body weight (Sae-Lim et al.,

2015). However, the degree to which genetic variation

for the predictability of a trait might respond to selec-

tion and influence evolution of other traits remains

unclear (but see Mulder et al., 2015). In a bivariate sce-

nario, Mulder et al. (2015) showed that additive genetic

variance in predictability of a linearly selected trait

could lead to nonlinear responses for correlated traits.

The recent development of a theoretical framework

(Hill & Mulder, 2010; Westneat et al., 2014) and of suit-

able statistical methods (Lee & Nelder, 2006; Cleasby

et al., 2015; Mulder et al., 2015) offer a way to advance

our understanding of these issues.

To date, the few published estimates of additive

genetic variance of predictability are restricted to a cap-

tive animal breeding environment (Hill & Mulder,

2010; Mulder et al., 2015; Sae-Lim et al., 2015), except

for one study (Mulder et al., 2016). Mulder et al. (2016)

found significant genetic variation in the variability of

fledging weights in wild great tits (Parus major). They

also showed that the variability in fledging weight was

maintained in the population via stabilizing selection.

Despite its potential importance, the existence of a

genetic basis of predictability in any traits in the wild is

poorly understood. Repeated sampling of a large num-

ber of pedigreed individuals is needed to apply these

models to a wild population. In addition, environmen-

tal sampling conditions should be measured carefully to

ensure that the variation in predictability is not only

due to confounding variation in environmental varia-

tion. However, it should be noted that unknown and

unmeasured individual- (IxE) or genotype- (GxE) by-

environment interactions will also generate between-

individual variation in within-individual variance.

Estimating individual variance in predictability could

thus be a more general approach to investigate IxE as it

does not require an environmental covariate and the

absence of variability in predictability would indicate

an absence of IxE with any environment.

Animal behaviours are easy traits to measure repeat-

edly in standardized conditions in the wild. Docility,

the reaction to being trapped and handled, is part of

the shyness-boldness category of temperament traits

and reflects an individual’s reaction to a risky situation

(R�eale et al., 2007). Between-individual variation in the

mean behavioural response to risky situation has been

thoroughly investigated. For example, docility has been

found to be repeatable, heritable, and to influence

reproduction in several species in the wild (R�eale et al.,

2007; Petelle et al., 2015). Between-individual variation

in predictability has been neglected. However, being

predictable or not might be as important as the mean

behavioural response when dealing with a risky situa-

tion (Stamps et al., 2012).

Using long-term trapping data on yellow-bellied mar-

mots, Marmota flaviventris, we estimated between-indivi-

dual variation in both mean docility and predictability

of docility. By means of a quantitative genetic

approach, we then implemented an analytical frame-

work that we define as a double hierarchical animal

model (DHAM) to decompose the variance of docility

and its predictability into their environmental and

genetic components.

Materials and methods

Study system

We used behavioural data collected as part of a long-

term demographic study on yellow-bellied marmots at

the Rocky Mountain Biological Laboratory (RMBL) in

Gothic, Colorado, USA (38°770N, 106°590W). Marmots

are large, facultatively social, subalpine rodents that live

in colonies consisting of one or more matrilineal groups
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(Frase & Hoffmann, 1980; Armitage, 2014). These colo-

nies usually consist of one adult male, multiple adult

females and their offspring. We regularly trap individu-

als using Tomahawk live traps set at burrow entrances.

Once trapped, individuals were weighed, sexed, their

ano-genital distance and left hind foot measured, ear

tagged, and given an unique dye mark to facilitate

identification from afar (Blumstein et al., 2009).

Docility was assessed as an individual’s reaction to

being trapped and handled (R�eale et al., 2007; Petelle

et al., 2013). Upon arriving at a trap, individuals were

placed inside a cloth-handling bag, and we dichoto-

mously scored (0, 1) whether individuals bit the trap,

emitted an alarm call, struggled in the trap or bag,

tooth chattered, and whether they hesitated moving

from the trap into the handling bag. We summed these

scores and subtracted them from a maximum of six to

obtain a value between 1 and 6. Thus, a docile individ-

ual would have a score of six whereas an individual

with a score of one would be nondocile or pugnacious

(R�eale et al., 2007). We quantified docility over 11 389

trapping events for 1576 individuals of known age

and sex from 2002–2014. The mean and range of

docility measurements varied widely across individuals

(Fig. S1).

Parentage was assigned from DNA samples collected

from individuals during their first trapping event. We

extracted DNA using a QiaGen QIAamp DNA minikit

and genotyped individuals using 12 microsatellites.

Alleles were visualized and assigned using GeneMapper

4.1 software (Applied Biosystems). CERVUS (Kali-

nowski et al., 2007) was then used to assign maternity

and paternity using a maximum likelihood method at

95% confidence for the trio. All adult males and

females in a colony were used as potential parents.

Genetic assignments of maternity confirmed beha-

vioural observations based on juveniles emergence from

maternal burrow. For full details on the pedigree recon-

struction method, see Olson et al. (2012) and Blumstein

et al. (2010). The pedigree used in these analyses

included 1588 individuals with 90% and 83% of the

maternal and paternal links known, respectively (see

Table S1 for detailed pedigree structure information).

Statistical analysis

The aim of our analysis was to concurrently estimate

the between-individual differences in mean docility and

its predictability (or residual within-individual vari-

ance). Moreover, we wanted to decompose the variabil-

ity of the mean trait and of its predictability into

environmental and genetic components using a quanti-

tative genetic approach. We developed four models dif-

fering in their random and residual structure that

progressively built towards this goal, whereas allowing

us to monitor any change in the estimates as increasing

complexity was introduced. Following previous results

from this population (Petelle et al., 2013, 2015), we

included the following fixed effects in the mean part of

all models: trial number, to account for potential habit-

uation to human handling; day of the year, as a proxy

for linear seasonal changes in docility; time of day,

coded as 0 for AM sampling and 1 for PM sampling;

and age, which was a categorical factor with three

levels (juveniles, yearlings and adults).

As docility is a discrete ordinal variable varying

between 1 and 6, the data were analysed using threshold

models (Foulley & Jaffr�ezic, 2010). This approach

assumes that the docility estimates, y, result from group-

ing an underlying continuous variable with a Gaussian

distribution, y*, using a probit link function and five cut-

off points, h1 < h2 < h3 < h4 < h5, to be estimated.

y ¼
1; if y�� h1
k; if hk�1 � y�\hk for k ¼ 2, 3, 4 and 5

6; if h5 � y�

8<
:

(1)

Model 1 was a traditional mixed-effects model, where

docility was modelled as a combination of fixed and

random effects and variance was assumed to be homo-

geneous across individuals.

Model 1 can be therefore written as:

y� ¼ X bþMyr þ Z id þ e (2)

where yr ~ N(0, I r2yr), id ~ N(0, I r2id) and e ~ N(0, I

r2e ). b, yr and pe are the vectors of fixed, random year

and random individual identity effects associated with

the corresponding incidence matrix X, M and Z. r2yr and
r2id are the between-year and between-individual ran-

dom effect variances, respectively. e is the vector of

residuals with variance r2e . I is the identity matrix and

the notation Ir2 signifies that the random effects and

the residuals are independently and identically dis-

tributed (iid). Constraining the residuals to be iid

assumes that there is no variation among individuals in

within-individual deviation from the mean (i.e. no

variation in predictability).

Similar to model 1, model 2 only considered changes

in mean docility. However, this model also included an

additive genetic component, fitted as a random effect

on the mean (Waldmann, 2009).

Model 2 is therefore equivalent to a classic animal

model (Kruuk, 2004), and can be written as:

y� ¼ X bþMyr þ Zpeþ Zaþ e (3)

where building on eqn 2, a ~ N(0, A r2a) and pe ~ N(0,

I r2pe). a and pe are, respectively, the vectors of additive

genetic and permanent environment effects. As each

individual has an additive genetic as well as a perma-

nent environment effect, both effects have the same

design matrix Z. r2a is the additive genetic variance of
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the mean trait, and A is the additive genetic relation-

ship matrix.

Model 3 was a double hierarchical generalized linear

model (DHGLM) (Lee & Nelder, 2006; Cleasby et al.,

2015). This included a model for the mean docility (as

in model 1), as well as a dispersion part for the residual

variance (i.e. predictability). Following SanCristobal-

Gaudy et al. (1998), the residual variance was modelled

on the log-normal scale as a function of the fixed effect

of age, with year and individual identity as random

effects. We also estimated the correlation between the

individual random effect on the mean and on the pre-

dictability, using a multivariate Normal distribution.

Model 3 can be written as:

y� ¼ Xm bm þM yrm þ Z idm þ e

logðr2e Þ ¼ Xvbv þ Zidv
(4)

where e ~ N(0, Diag [r2e ]),
pem
pev

� �
�N

0

0

;Rid � I

0
@

1
A and

Rpe ¼
r2idm ridmridv;expqid
ridmridv;expqid r2idv;exp

" #
. The m and v subscripts

indicate that the effect is fitted on the mean part and the

dispersion part of the model, respectively. Building on

eqn 2, residuals are not assumed to be iid. r2e is now a vec-

tor and Diag() is used to create a diagonal matrix. bv and

idv are the vectors of fixed and random individual identity

effects associated with the corresponding incidence

matrix Xv and Z. r2idv;exp is the between-individual variance

in predictability on the exponential scale. qid is the

correlation at the individual level between the variance of

themean trait and the variance of its predictability.

Finally, model 4 was a double hierarchical general-

ized linear animal model (DHGLAM), with a mean and

a dispersion part as in model 3, but including an addi-

tive genetic component (as in model 2) fitted as a cor-

related random effect on both mean and predictability

(Felleki et al., 2012). Starting from eqn 4, model 4 can

therefore be written as:

y� ¼ Xm bm þMyrm þ Zpem þ Zam þ e

logðr2e Þ ¼ Xv bv þ Zpev þ Zav
(5)

where
am
av

� �
�N

0

0

;Ra � A

0
@

1
A and

Ra ¼ r2am ramrav;expqa
ramrav;expqa r2av;exp

� �
. av is the vector of addi-

tive genetic effects associated with the corresponding

incidence matrix Z. r2av;exp is the additive genetic vari-

ance of predictability on the exponential scale, and qa
is the additive genetic correlation between the mean

and predictability variances.

The estimated variance components (r2pev;exp and r2av;exp)
for the predictability of docility were on the exponen-

tial scale (exp) and were converted to an additive scale

(r2pev and r2av ) using the equations derived by Mulder

et al. (2007) (see also Appendix S3 in Supporting Infor-

mation). For each model, we estimated the phenotypic

variance conditioned on the fixed effects (r2P ) as the

sum of the variance components and the residual vari-

ance (r2e ). For models 3 and 4, r2e was estimated as

exp bv0þðbv1=3Þþðbv2=3Þð Þ�exp r2yrv;exp=2
� �

�exp r2pev;exp=2
� �

�
exp r2av;exp=2

� �
(Appendix S3; Felleki et al., 2012; Sae-

Lim et al., 2015).

Repeatability (models 1 and 3) and permanent envi-

ronment effect (models 2 and 4) for mean docility was

estimated as r2idm=r
2
P and for predictability of docility

(id2v ) as r2idv=ð2r4P þ 3ðr2idv þ r2av ÞÞ. Similarly heritability

of docility (h2) and of predictability of docility (h2v ) were

estimated as r2am=r
2
P and r2av=ð2r4P þ 3ðr2pev þ r2av ÞÞ,

respectively (Appendix S3; Mulder et al. 2007). We also

estimated the genetic coefficient of variation of the

variance in predictability on the additive scale as

GCVv ¼ rav=r
2
e Hill & Mulder, 2010).

The four models were fitted in a Bayesian framework

using OpenBUGS 3.2.1 (Thomas et al., 2006), run from

R (R Development Core Team 2014) via the package

R2OpenBUGS (Sturtz et al., 2005). Quantitative genetic

effects were implemented in BUGS following Wald-

mann (2009) and Gorjanc (2010). We used Normal pri-

ors with mean 0 and precision 0.001 for the fixed

effects in both the mean and dispersion part. re had a

uniform prior U(0,20). ryrm and ryrv had uniform priors

U(0,5). In models 1 and 2, rindm and rpem had a uniform

prior U(0,15), whereas in models 3 and 4, Σind and Σpe
had an inverse Wishart prior with three degrees of free-

dom and scale matrix
1 0

0 1

� �
. In model 2, ram had a

uniform prior U(0,15), whereas for Σa in model 4, we

used an inverse Wishart prior with three degrees of

freedom and scale matrix
1 0

0 1

� �
. h1 and h5 were fixed

to 0 and 15, respectively, to allow identification of the

parameters and facilitate convergence. Changing their

values provided qualitatively similar results. The Open-

BUGS code for model 4 is provided in the Supporting

Information (Appendix S2). Markov chain Monte Carlo

(MCMC) algorithms were iterated until convergence to

the joint posterior distribution. Ten chains starting at

different initial values were run in parallel. Conver-

gence was first assessed by visually inspecting the trace

plots, which were also used to identify an appropriate

number of burn-in iterations. Each chain ran for

100 000 iterations including 40 000 burn-in iterations.

We then checked that the Monte Carlo error was less

than 1–5% of the posterior standard deviation, and that
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the Brooks-Gelman-Rubin (BGR) diagnostic converged

to 1 � 0.2 (Gilks et al., 1995). These convergence

checks were carried out using the package coda (Plum-

mer et al., 2006) in R. The mode and 95% Highest Pos-

terior Density Intervals (HPDI) were used to summarize

the posterior distributions of the model parameters.

Results are reported using the combined 600 000 itera-

tions from the 10 unthinned chains following (Link &

Eaton, 2012; Kruschke, 2014). Estimates were reported

on the probit scale.

Results

We found that parameter estimates for both fixed and

random effects were highly consistent across all models

(Fig. 2, Table S2), validating the approach used.

Between-individual variance (r2ind) for the mean was

consistent across models 1 and 3. The permanent envi-

ronment (r2pe) and additive genetic (r2pe) variances were

consistent across models 2 and 4 (Fig. 2, Table S2). In

models 2 and 4, the sum of the additive genetic (r2a)
and permanent environment (r2pe) variances were con-

sistent with the estimates of r2ind in models 1 and 3,

indicating that the models were behaving adequately

(Table S2). As for the mean part of the model, the sum

of the additive genetic (r2av ) and permanent environ-

ment (r2pev ) variances in the dispersion part of model 4

were consistent with the estimates of r2indv in model 3

(Table S2).

Results for fixed effects in model 1 and 2 were con-

sistent both in direction and significance with previ-

ously published studies (Petelle et al., 2013, 2015). Trial

number and age had a significant effect on the mean

part of all models (meaning that the 95% HDPI of the

associated coefficients did not include zero). Age was

also significant in the dispersion part of both model 3

and 4 (Fig. 2, Table S2). However, time of the day had

no significant effect when also modelling the dispersion

of docility (models 3 and 4, Fig. 2, Table S2). Moreover,

day of the year had a significant effect only in models 3

and 4 (Fig. 2, Table S2), when the variation in pre-

dictability was fitted in the model. In both cases, the

differences in significance did not result from a change

in size of the credible intervals but from a change in

the mean estimates. Despite such differences, the rela-

tive coefficient estimates in both models 3 and 4 are

within the credible intervals obtained from models 1

and 2 (Fig. 2, Table S2).

As previously reported (Petelle et al., 2015), we found

nonzero repeatability (r2), permanent environment

(pe2) and heritability (h2) of docility (Table 1). More

importantly, we found nonzero repeatability, perma-

nent environment and additive genetic variance in the

predictability (i.e. within-individual variance) of docility

(Fig. 2, Table 1). The correlation between the mean

and the within-individual variance was negative at

both phenotypic (corind model 3) and permanent

environment level (corpe model 4), but the associated

credible intervals slightly overlapped zero (Fig. 2,

Table 1). Even if these two estimates were therefore

not significantly different from zero, it should be noted

that 96% of their posterior distributions was negative.

This suggests that corind and corpe are negative and a lar-

ger sample size would decrease the size of the credible

interval. The genetic correlation between the variance

of the mean trait and the variance of predictability was

not significant and was estimated as zero (Fig. 2,

Table 1).

The random effect of year was negligible in the dis-

persion part of the models (Fig. 2, Table S2). We then

refitted the models 3 and 4 without this random effect

in the dispersion part of the model and found both

qualitatively and quantitatively similar results.

Discussion

The long-term data available for the RMBL yellow-bel-

lied marmot population provides a unique opportunity

to advance our understanding of between-individual

differences in predictability (or within-individual vari-

ance). We obtained three major results with strong

implications for our understanding of behavioural evo-

lution. First, contrary to the assumptions of most beha-

vioural studies, we found that predictability was not

homogeneous across individuals and therefore standard

analytical approaches may introduce substantial bias in

estimates of the mean trait. Second, we showed a sig-

nificant additive genetic variance in the predictability of

docility. Third, we found a negative correlation

between mean docility and its predictability at the phe-

notypic level. This analysis is, to our knowledge, one of

the first to estimate the genetic basis of both the mean

of a trait and its predictability in a wild population for

any trait.

Our results are quantitatively similar to previous esti-

mates of heritability for the predictability of life-history

traits, h2v , and their coefficient of genetic variation GCVv

obtained for captive animals (Hill & Mulder, 2010) and

wild great tits (Mulder et al., 2016). The estimate of h2v
was low, partly because the predictability of docility

can be affected by multiple environmental factors that

reduce heritability (Houle, 1992; Westneat et al., 2014).

Nonetheless, its coefficient of genetic variation, GCVv,

was high (35.5%), which indicates a high potential for

genetic change in response to selection (Mulder et al.,

2007; Hill & Mulder, 2010).

The effects of the predictability of a trait on an indi-

vidual’s fitness (e.g. survival or reproduction) are rela-

tively unknown (but see Mulder et al., 2015, 2016).

The predictability of docility could be under selection

and evolve. Different selection pressures could operate

on the predictability of docility. For example, the diver-

sity in predator species may favour individuals with

higher variation in their behavioural responses. In
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addition, despite the absence of genetic correlation

between docility and its predictability, predictability of

docility will be under selection in the case of directional

(truncation) selection on mean docility. Directional

selection will not only select for the mean of the trait,

but it will also select for increased trait variation (Mul-

der et al., 2007). Individuals with lower predictability

(i.e. a higher within-individual variance) have a higher

probability of expressing a trait value above the selec-

tion threshold and hence be selected (Mulder et al.,

2007). In the marmots, selection for less docile individ-

uals would therefore also indirectly select for lower pre-

dictability. Thus, the existence of genetic variation in

predictability, despite the absence of genetic correlation

with the mean, could render selection on docility less

effective. The evolutionary implications of an additive

genetic basis for the predictability of a trait under mul-

tivariate selection on both mean traits and their pre-

dictability are not yet fully understood (Mulder et al.,

2015). Correlations between the predictability of a trait

and the mean level of another trait is expected to lead

to a nonlinear relationship between the two traits

(Mulder et al., 2015). However, the impact that direct

selection has on the predictability of a trait, or the con-

sequences of a genetic correlation between the pre-

dictability of two different traits has on the evolution of

mean traits, have not been investigated. As indicated

by Westneat et al. (2014), this represents a promising

area of future research.

The mechanisms underlying variance in predictability

are not clear and might include phenotype switching,

polyphenisms, diversification bet-hedging and multidi-

mensional reaction norms (Westneat et al., 2014). In

addition to the evolutionary importance of the genetic

basis of predictability in docility, we need to understand

the ecological implications of the variation in pre-

dictability of docility. Optimal strategies to react to risky

situations might not be only a matter of mean beha-

viour but also of the predictability of that behaviour.

The negative phenotypic correlation between the mean

docility and its predictability indicates that less docile

marmots are also less predictable (i.e. lower mean
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Fig. 2 Posterior mode and 95% highest

posterior density intervals for the four

models of docility of yellow-bellied

marmots at the Rocky Mountain

Biological Laboratory, Colorado. The

analysis used 11 389 observations from

1576 individuals collected between

2002 and 2014. Juvenile was used as

the reference level for the factor Age in

both the mean and dispersion part of

the model. The x-axis uses a logarithmic

scale. Residual variances (r2e ) for models

3 and 4 were estimated based on

Appendix S3. r2 indicates variance

components. The grey shaded area

illustrates an invalid region of the

parameter space. Variance components

were constrained to be positive. Five

different thresholds were needed in the

ordinal model to define the six

observed categories of docility.

Threshold 1 and threshold 5 were fixed

to 0 and 15, respectively.
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docility with higher within-individual variance in docil-

ity). If docility measured in the trap reflects the

antipredatory response in the wild, then, following the

pace of life syndrome hypothesis (R�eale et al., 2010),

these results could suggest that individuals that are

more aggressive, explore more and thus are exposed

more often to predators have a higher variance in their

behavioural response. Higher variability in antipreda-

tory behaviours for individuals exposed more often to

predators could decrease predation rate and thus be an

adaptive strategy. On the other hand, higher variability

in antipredatory behaviours could be maladaptive

because falling under a threshold of antipredatory

behaviour in the presence of a predator might be

deadly.

Our results showed highly consistent estimates for

the random effects on mean docility across all models,

whether we included heterogeneity in individual resid-

ual variance (models 3 and 4) or not (1 and 2). This

suggests that ignoring the variation in predictability

does not strongly bias our conclusions on the variance

components of the mean docility. However, for fixed

covariates, the effects of trial number and age were

consistent across all models but the effects of day of the

year and time of the day changed significantly between

models with and without variation in predictability.

Ignoring the variability in predictability (model 1 and

2) would lead to conclude that marmots are less docile

in the afternoon and not affected by seasons (day of

the year). However, models 3 and 4 indicated that mar-

mots were not affected by time of the day and became

more docile over the summer. Those differences could

have important implications. For example, in order to

handle animals when they are the most docile, the

sampling protocol to do so would differ widely depend-

ing on the model used. The differences between the

models for the effects of time of the day and time of

the year might result from more variable individuals

being sampled more often in the morning and later in

the season. Overall, this result highlights that ignoring

between-individual variation in predictability can bias

the results obtained on the mean trait. Moreover, given

the overlap in the credible intervals of these parameters

across all models, it illustrates that any inference based

only on a significance threshold may lead to miss

important biological insights.

In this study, we introduced a framework to obtain

robust estimates of the predictability of a trait that are

comparable across populations, traits and studies

(Appendix S3). Cleasby et al. (2015) proposed to esti-

mate the coefficient of variation of predictability on the

exponential scale. However, their approach only allows

fitting individual identity as the sole random effect in

the dispersion part of the model and was thus not

appropriate in our situation. Based on work by Mulder

et al. (2007) and Sae-Lim et al. (2015), we presented

the equations to estimate repeatability r2v and heritabil-

ity h2v of the predictability of a trait when multiple ran-

dom effects are fitted in the dispersion part of the

model. These equations assume that the genetic (ra)

and permanent environment (rpe) correlations between

the variance of the mean and of the predictability are 0

(Mulder et al., 2007). Even if the consequences of this

simplifying assumption seem negligible (Mulder et al.,

2007; Sae-Lim et al., 2015), h2v should be used only as a

first approximation in standard prediction evolutionary

Table 1 Estimates of variance ratios of docility (with 95% highest posterior density intervals) for the four models differing in their random

and residual structure. The analysis used 11 389 observations from 1576 individuals collected between 2002 and 2014.

Models

1 2 3 4

r2P 30.216 (27.654/33.069) 30.544 (27.925/33.322) 26.416 (22.796/31.181) 27.005 (22.704/32.106)

Mean part

year2m 0.027 (0.011/0.08) 0.023 (0.009/0.069) 0.035 (0.014/0.096) 0.028 (0.011/0.083)

r2�m =pe2þm 0.224 (0.198/0.253)* 0.106 (0.078/0.138)+ 0.19 (0.158/0.225)* 0.08 (0.052/0.11)+

h2m – 0.126 (0.089/0.171) – 0.106 (0.069/0.152)

Dispersion part

year2v – – 0.007 (0.002/0.027) 0.009 (0.002/0.031)

r2�v =pe2þv – – 0.038 (0.024/0.057)* 0.024 (0.013/0.039)+

h2v – – – 0.027 (0.016/0.048)

GCVV – – – 0.355 (0.272/0.471)

Correlation

cor�ind=cor
þ
pe - �0.183 (�0.398/0.027)* �0.262 (�0.557/0.073)+

cora – – – �0.008 (�0.388/0.289)

r2P = estimated phenotypic variance. The subscripts m and v indicate estimates for the mean or the dispersion part of the model, respec-

tively. h2 = heritability. r2�=pe2þ = repeatability (models 1 and 3) or permanent environment (2 and 4) estimates. year2 = proportion of

variance associated with year. GCVV is the genetic coefficient of variation for the predictability of docility. cor�ind stand for the correlation

between the mean and the variance at the individual level (model 3), and corþpe and cora for the permanent environment and additive

genetic correlations, respectively (model 4).
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models (e.g. the breeder’s equation) when the genetic

correlation differs from 0 (see Mulder et al. (2007) for

the complete equations).

This is one of the first studies to have estimated the

genetic variance and covariance between a trait and its

predictability (i.e. within-individual variance) in a wild-

living animal population. We illustrate that heritability

and other variance ratios can be estimated using double

hierarchical animal models and argue that these should

be preferred over other techniques to compare popula-

tions, species and studies (R�eale & Dingemanse, 2009;

Stamps et al., 2012; Cleasby et al., 2015).
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