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Social animals live and interact together, forming complex relationships and social structure. These rela-
tionships can have important fitness consequences, but most studies do not explicitly measure those rela-
tionships. An approach that explicitly measures relationships will further our understanding of social
complexity and the consequences of both direct and indirect interactions. Social network analysis is the
study of social groups as networks of nodes connected by social ties. This approach examines individuals
and groups in the context of relationships between group members. Application of social network analysis
to animal behaviour can advance the field by identifying and quantifying specific attributes of social rela-
tionships, many of which are not captured by more common measures of sociality, such as group size. So-
phisticated methods for network construction and analysis exist in other fields, but until recently, have seen
relatively little application to animal systems. We present a brief history of social network analysis, a descrip-
tion of basic concepts and previous applications to animal behaviour. We then highlight relevance and con-
straints of some network measures, including results from an original study of the effect of sampling on
network parameter estimates, and we end with promising directions for research. By doing so, we provide
a prospective overview of social network analysis’ general utility for the study of animal social behaviour.

� 2007 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Keywords: animal behaviour; quantifying sociality; social n
Correspo
and Evo
South, L
com). F.
Study, H

0003e3
etwork analysis; social structure
Sociality implies a number of individuals living and/or relationships directly. Formal network analyses will comple-

interacting together, which can lead to complex social
relationships and structure. Studying these aspects helps us
understand the causes and consequences of sociality (Hinde
1976; Krause & Ruxton 2002; Whitehead 2008). Commonly
used measures of social complexity (e.g. group size, mating
system) have revealed many consequences of sociality (e.g.
Côté & Poulin 1995; Hoogland 1995; Brown & Brown
1996; Dunbar 1998). Yet these measures only indirectly re-
flect the social relationships between individuals, and they
assume homogeneity of effect on all individuals. We suggest
that social network analysis will provide a deeper under-
standing of social complexity by measuring social
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ment relationship-based approaches previously applied to
animal behaviour (Hinde 1976; Whitehead 1997; Pepper
et al. 1999). We believe that social network analysis has gen-
eral relevance to all social systems, and that by expanding its
application in animal behaviour, we will gain novel insights
about the evolution and maintenance of sociality. In this re-
view, we suggest how social network analysis can be used for
studying animal systems, we use socially transmittable path-
ogens as a concrete example to illustrate specific points, and
we identify possible constraints of this approach. Our goal is
tobriefly introduce andadvocate the further use of social net-
work analysis in animal behaviour; for an extensive review of
this topic, see Croft et al. (2007).

NETWORK THEORY

A network models a system composed of individual
components (nodes) and their connections (ties; see Table 1
dy of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
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Table 1. Terminology

Basic terms
Graph: a set of nodes and a set of relationships between the

nodes, given by a matrix or visualized as a picture showing
dots connected by lines

Node: a component of a network with known relationships
to others in the graph model representing the network; in
a social network, this can be an individual (person or animal)
or group; also called a vertex or point

Path length: the shortest number of ties between two nodes
Sociomatrix: for a group with n members, an n�n matrix

with each group member along the vertical and horizontal
axes and each entry in the grid as the weight of the social re-
lationship, if any, between the two intersecting individuals

Tie: a relationship between two components of a network,
where the two related components are nodes in the graph
model representing the network; in a social network, these
can be any sort of social relationship, such as social interac-
tions or information transfer; also called an edge or link

Individual (local) measures
Betweenness centrality: centrality based on the number of

shortest paths between every pair of other group members
on which the focal individual lies

Centrality: a measure of an individual’s structural impor-
tance in a group based on its network position

Closeness centrality: centrality based on the shortest path
length between a focal individual and all other members of
the social group

Degree centrality: centrality based on the number of direct
ties an individual has

Indegree (reception): the number of ties directed towards
an animal, e.g. the number of social interactions it receives

Node degree: the number of ties a focal animal has; the
number of other animals with which the focal individual
interacts

Outdegree (emission): the number of ties originating from
an animal, e.g. the number of social interactions it initiates

Intermediate measures
Clustering coefficient: the density of the subnetwork of a fo-

cal individual’s neighbours; the number of ties between
neighbours is divided by the maximal possible number of
ties between them

Cliquishness: how much the network is divided into cohe-
sive subgroups; a clique is a set of nodes where each node
is directly tied to each other

Group measures
Average path length: the average of all path lengths be-

tween all pairs of nodes in the network
Density: the number of realized ties divided by the number

of possible ties in the network
Diameter: the longest path length in the network
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for definitions of italicized terms). The shortest number of
ties between two nodes is the path length between that
pair. This approach provides the best tools for understand-
ing systems in which the most important characteristics
are the connections between components. The social net-
work approach addresses the structure of relationships
and the mutual interplay between the individual and
the group. While ‘group’ can be defined in many ways,
here we use ‘group’ to mean the network as a whole, or
the collection of potentially interacting individuals that
are distinguished from other such collections of individ-
uals. As with other definitions of ‘group’, this can theoret-
ically range from two individuals to whole populations.
For simplicity, here we generally refer to intermediately
sized groups, such as a herd of horses or a colony of birds.
Two major reasons to use formal network analysis are that
it provides formal descriptors (definitions and measures)
for characterizing social groups and that, by providing
quantitative measures of relationships, it allows us to
test statistical models about relationships and structure
(Wasserman & Faust 1994).

In social networks, nodes are social entities, which can
be individuals or units (e.g. corporations in a business
network), and ties are social relationships between two
nodes at a given time; these can be interactions or
associations (e.g. business dealings or friendships). In
animals, relationships can include well-studied social in-
teractions (e.g. agonistic interactions that create domi-
nance hierarchies or grooming relationships in primate
affiliative networks), as well as transmission events (e.g.
pathogens, signals or social learning), resource sharing
(e.g. food, territories or even heat in socially thermoreg-
ulating animals) and kinship ties. Ties can also have
weight, direction and sign (i.e. positive or negative) to
provide additional details about interactions (Fig. 1). In an
unweighted (binary) network, all ties have value of 1, re-
flecting presence of a relationship between two nodes,
and absence of a relationship is denoted by a 0. In
a weighted network, ties reflect the strength of the rela-
tionships and can have different values. In a nondirected
network, ties simply show that two nodes are connected.
However, in a directed network, there can be potential in-
equality in the relationship, and AeB may not be the same
as BeA. In animal behaviour, an easy way to conceptualize
directionality is as directed social interactions, where ties
reflect the initiator and recipient of the relationship (but
note that directed ties need not have an initiator or recip-
ient, e.g. A is the boss of B). Positive and negative values of
ties can denote the nature of interactions or their effects
on individuals. A network is commonly depicted visually
as a graph (Fig. 1), also called a sociogram for social net-
works. More useful for quantitative analysis is a sociomatrix
(a matrix with each node along the vertical and horizontal
axes and each entry in the grid as the weight of the social
relationship, if any, between the two intersecting nodes),
and this form is the basis for many network analysis
programs.

Hereafter, we use the term ‘node’ interchangeably with
‘individual’, and ‘tie’ with ‘relationship’. While other
terms have been used for these concepts, in animal social
networks, we anticipate that nodes will most commonly
represent individuals, and we choose ‘relationship’ rather
than ‘relation’ (which is common in sociology) to avoid
confusion with the term ‘relatedness’, which might limit
the idea of social relationships. Here and elsewhere, we
will illustrate the biological relevance of network concepts
with the example of socially influenced transmission of
a pathogen in a group of animals. Pathogen transmission
can be influenced by social networks through rate of
contact as well as overall social structure. While social
influence can be general as in an airborne disease (e.g.
a cold virus) that will be influenced by proximity and all
types of social interactions, we will use the specific case of
sexually transmitted diseases (STDs) and sexual networks.
In this system, nodes are potentially sexually active
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individuals, and ties are sexual relationships along which
an STD may be transmitted. Binary ties would simply
reflect the presence or absence of a sexual relationship,
while weighted ties might reflect different rates of sexual
contact between two individuals. Directed ties may be-
come important if only one individual in a pair is infected,
and the flow of the transmission can only go from one
direction to another. While we use the example of disease,
in which it may be desirable to minimize transmission, it
is important to realize that in other cases (e.g. communi-
cation) selection should act to maximize transmission.

Broadly, the scope of network measures ranges from
describing individuals to groups, with intermediate ‘me-
soscale’ measures in between. At an individual level,
network measures can describe the neighbourhood of
a focal individual, patterns of direct and short indirect
ties, and effects of strong and weak relationships. An
example of an individual measure is node degree, which is
the number of direct ties an individual has, i.e. the num-
ber of other individuals with which it has relationships.
Direct ties are a focal individual’s immediate connections;
indirect ties are those with individuals more than one step
away (see Fig. 2c). Although the relevance of indirect and
weak interactions is not always obvious, their effects can
be significant (see Granovetter 1973). For example, an in-
dividual’s chance of contracting an STD depends not only
on its own sexual partners, but also on their sexual part-
ners. An infected individual may ultimately pass the
disease to someone several partners removed, so an indi-
vidual may be affected by anyone to whom it is connected
through a continuous chain of intermediates. Thus, in ad-
dition to disease characteristics such as virulence, the na-
ture and structure of social relationships will also affect
likelihood and paths of transmission. In this way, social
network analysis should explain biological phenomena
that are influenced by indirect relationships better than
other measures, such as group size, which do not contain
sufficient details about individual social relationships. Im-
portantly, network measures are calculated from explicit
mathematical formulae, offering objective measures of in-
dividual and group sociality, and many measures can be
standardized by dividing by group size, facilitating com-
parisons between groups. Thus, they may be useful for
comparative studies (Faust & Skvoretz 2002; but see also
Faust 2006 for issues that arise when comparing networks
with very different sizes and densities).
(a) (b)

+ +

−

Figure 1. (a) A simple three-node network (triad) with ties that are

unweighted, nondirected, and have no sign. (b) The same network

with ties given weights, directions and signs, providing more infor-
mation about the network; this triad also illustrates transitivity and

a reciprocal negative relationship between the two bottom nodes.
At a group level, network measures can describe the
overall structure and possible stability (or vulnerability) of
groups. Examples of group measures include average path
length, the average of all path length between all pairs of in-
dividuals in the network, and diameter, the longest path
length in a network. In social networks, group-level stability
has implications for the removal (death or emigration) or
addition (birth or immigration) of individuals, and for the
extent to which structure influences network function or
efficiency. These properties can only be understood in a net-
work context and at the level of the whole network, and
thus modern network theory can be the basis for a more
holistic understanding of how social interactions influence
group structure and dynamics. In the case of an STD, some
network structures may allow for faster or more pervasive
spread of the disease, and some social groups may be more
at risk than others (Klovdahl et al. 1994).
PREVIOUS NETWORK STUDIES

Network theory originated in mathematical graph theory
and was soon applied to other fields (e.g. sociology: Cart-
wright & Harary 1956; business: Levine 1972; markets:
Burt 1988; political science: Harary 1959, 1961a; ecology:
Harary 1961b). Social network analysis has a long history
of application in human sociology (Wasserman & Faust
1994; Degenne & Forsé 1999; Hanneman & Riddle 2005;
also see the scientific journals Social Networks, Journal of
Mathematical Sociology and Connections), and some net-
work phrases describing sociological phenomena are
even in general usage, e.g. the idea of ‘six degrees of sepa-
ration’ based on a study by Milgram (1967) and popular-
ized in a play (Guare 1990) and movie (Guare 1993).
Network concepts have also been topics of recent popular
literature (Gladwell 2000; Barabási 2002; Watts 2003). In
various fields, social network analysis has contributed
novel insights through the relationship-based approach.
In epidemiology, for example traditional models of disease
transmission assume random interactions between indi-
viduals (Anderson & May 1991), but social relationships
are not random and can strongly affect the spread of dis-
ease. These effects can be subtle, but still change disease
transmission dynamics (Watts 1999). The utility of net-
work models to incorporate patterns of social relation-
ships is ideally illustrated in the case of an STD, whose
transmission can only occur through the network of sex-
ual relations and cannot be accurately modelled without
understanding social structure (reviewed in Liljeros et al.
2003). Yet while network analyses became important tools
in many fields, there was a limited and delayed applica-
tion in ecosystems ecology (Levine 1980), in which it
was mostly restricted to economic inputeoutput analyses
(Hannon 1973). Remarkably, there was even less applica-
tion to behavioural sciences; ethologists mostly restricted
network analyses to describing dominance relationships
from observed agonistic interactions (e.g. Appleby 1983;
Archie et al. 2006). Note, however, that concepts of dom-
inance developed quite independently of social network
analysis (e.g. de Vries et al. 2006).
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Figure 2. Three networks, each with seven nodes but different topol-

ogies: (a) a ‘star’ network where the individual in the middle has the

highest degree, closeness and betweenness centrality and where the
network has maximal centralization overall; (b) a ‘closed’ or ‘circular’

network where all individuals have equal degree, closeness and be-

tweenness, while centralization is 0; and (c) a network where individ-
uals A and C have highest degree, but individual B has highest

closeness and betweenness. Note that A and C are indirectly tied

to each other through their direct ties with B.
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A recent explosion in computer processing power has
created the ability to handle enormous databases and has
revolutionized our understanding of larger and more
complex networks describing real data (Strogatz 2001;
Albert & Barabási 2002; Newman 2003b; Boccaletti et al.
2006). In general, we are no longer computationally
limited by the number of nodes that can be studied, and
researchers have begun to ask novel questions of phenom-
ena as diverse as the Internet (Barabási et al. 2000), traffic
patterns (Fekete et al. 2006), neural networks (Freeman
2005), food webs (Solé & Montoya 2001; Luczkovich
et al. 2003), gene and protein networks (Milo et al.
2002), terrorist networks (Krebs 2002) and publication
networks (Newman 2003a). There are both striking simi-
larities and differences between diverse networks, and so-
cial networks may have some distinct properties of their
own (Newman & Park 2003). In all of these cases, the
study of networks fundamentally enhances our under-
standing of how parts are connected as a whole.

While some early sociometric analyses were applied to
primates (Sade & Dow 1994), behavioural biologists have
only more recently recognized the potential of modern
network tools to broader contexts (McMahon et al.
2001; Fewell 2003; Proulx et al. 2005). In the last few
years, there have been novel and diverse applications of
current network theory to nonhuman taxa, demonstrat-
ing its potential for animal behaviour (Croft et al. 2007).
Seminal work in bottle-nosed dolphins (Tursiops spp.) re-
vealed many notable relational aspects of their social
structure. Dolphin social groups showed a ‘scale-free’ pat-
tern (meaning that the degree distribution of the network
follows a power law: Barabási & Albert 1999), giving it
similar properties (such as robustness to the random re-
moval of individuals) of other scale-free networks, like
the Internet or molecular networks. However, unlike pre-
viously studied scale-free networks, it was also robust to
the removal of key individuals (Lusseau 2003). As in hu-
mans, affiliation by sex and age were important in group
formation in these animals (but interestingly, unlike hu-
mans, dolphins did not affiliate by degree), and a few in-
dividuals held structurally important positions in the
social network (Lusseau & Newman 2004). Furthermore,
dolphin networks had ‘small-world characteristics’, a com-
bination of highly clustered subgroups and short average
path lengths, which exists in many human social net-
works and may be very efficient for communication
(Watts & Strogatz 1998), and their ties were based mainly
on short-term associations, suggesting a fissionefusion
society (Lusseau et al. 2006). These studies and others
(e.g. Connor et al. 1998; Nanayakkara & Blumstein
2003; Whitehead et al. 2005) used SOCPROG (Whitehead
2006), a valuable program for describing animal social
structure from observed associations.

Social network analysis has also been used to describe
complex social structure in fish. Guppies, Poecilia reticu-
late, had small-world networks, and the network structure
predicted patterns of cooperation (Croft et al. 2004, 2006).
A comparison of social networks in guppies and three-
spine stickleback, Gasterosteus aculeatus, found significant
structure with ‘social cliquishness’ (Croft et al. 2005).
Mechanisms proposed to explain the observed structure
included association of similar-sized individuals, shoaling
tendencies and repeated interactions between individuals,
traits that satisfy certain prerequisites for the evolution of
reciprocity and cooperation.

Innovative network studies in pigtailed macaques,
Macaca nemestrina, examined the effect on network struc-
ture of removing key individuals (Flack et al. 2005, 2006),
using both simulated and experimental removals resem-
bling genetic knock-outs used to identify gene function.
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Results indicated that key individuals can have dispropor-
tionately large effects on network stability and that predic-
tions based on simulations may not accurately approximate
real-life consequences, a fact that often is not fully ap-
preciated in network models of ecological food webs
(Jordán & Scheuring 2002; Eklöf & Ebenman 2006).

Spatial association networks also have consequences for
social animals. Rhodes et al. (2006) found a scale-free net-
work in the pattern of roosting tree usage by white-striped
freetail bats, Tadarida australis. A single habitat tree was
the hub of the network, where nodes were roosting habi-
tat trees, and ties were individual bats’ roost-switching
events. The topology of this spatial network could have
consequences on the social life and epidemiology of these
animals, since individuals using different roosting trees
spread over a large area could meet with surprising fre-
quency at the central communal roosting tree.

These studies in diverse taxa show how modern social
network analysis can contribute novel insights to animal
behaviour and how these findings may influence applica-
tions of behavioural studies. A common theme is the
importance of relational data for understanding overall
structure and the roles of individuals within that structure.
While these studies have made important headway, mod-
ern social network analysis of animal systems is only in its
earliest stages. Comprehensive network studies on more
animal systems over longer time periods will enhance our
understanding of sociality and will allow novel analyses
and comparisons. Future studies must go beyond simple
network description and begin to relate network structure
to biological and evolutionary consequences.
NETWORK MEASURES

In this section we present some common network mea-
sures and discuss biological relevance to animal social
behaviour in the specific context of a STD. This is not
intended as a comprehensive description of all useful
methods but rather as general suggestions to facilitate
further research. We provide conceptual rather than
formal definitions to highlight potential biological signif-
icance and to avoid confusion in some terms, for which
exact definitions vary by source. For detailed definitions,
formulae and methodology, see Wasserman & Faust
(1994), Borgatti et al. (2006b) and Croft et al. (2007).
Individual Measures
Recall, individual measures are calculated from a focal
individual’s neighbours (those that are directly linked in
the network). This individually based, or ego-centric,
viewpoint describes a specific individual’s position in the
network, and the potential effect it has on (and receives
from) others. An individual measure can reflect relation-
ships with just those directly connected to the focal
individual, or also individuals indirectly connected to
the focal individual, up to a given number of steps.
Specifications are set based on applicability to the study.

We defined node degree above as the number of direct
ties a focal individual has. A related idea in a weighted
network is relationship strength, which is the weight of
the tie (Barthélemy et al. 2005). In our STD example,
node degree might be the number of other animals with
which the focal animal copulates, and relationship
strength, the number of times the focal animals copulates
with each. Total copulations (the sum of all the relationship
strengths) might reflect differences in number of chan-
ces for an animal to be exposed to the STD. Although
they reflect slightly different aspects of social relation-
ships, both of these measures will affect an individual’s
risk of infection, but one may be more appropriate in
a given context. For instance, node degree may be
more relevant for spread of a highly infectious disease,
while total relationship strength might be more relevant
for a less virulent disease that requires repeated expo-
sures for infection. In a directed network, indegree is
the number of ties directed towards an animal (i.e. the
number of relationships in which it is the receptor),
and outdegree is the number of ties originating from an
animal (i.e. the number of relationships in which it is
the emitter). The difference between indegree and out-
degree, which can be a positive or negative number, re-
flects the local component of sociometric ‘net status’
(sensu Harary 1959). Indegree might reflect how suscep-
tible an uninfected animal is to infection, and outdegree
might reflect how contagious an infected animal may
be. These same ideas apply to other forms of transmis-
sion, such as the transmission of information contained
in signals (McGregor 2005) and the spread of innova-
tions (e.g. Swan et al. 1999; Perry & Manson 2003).
One limitation of social network analysis in modelling
dynamic processes such as transmission is that a network
represents a structure at one point in time, while infer-
ences about dynamics must be made over longer periods
of time (see Issues In Applying Social Network Analysis).

Centrality is one way to quantify an individual’s
structural importance in a group (Freeman 1979; Friedkin
1991). There are three common ways to describe central-
ity. Degree centrality is based on the number of direct ties
an animal has, i.e. the more others with which an animal
has relationships, the more central it is. Therefore, an an-
imal with more ties will have more influence on those
around it and possibly on the whole network (cf. a net-
work ‘star’, Fig. 2a). An animal with more sexual partners
has more chance of catching an STD, and if infected, more
importance in spreading it. Closeness centrality describes
how well connected an animal is to all others in the net-
work, based on the inverse of shortest path lengths be-
tween that animal and every other animal in the social
network. This measure reflects both direct and indirect re-
lationships. An animal that is not directly connected to
every other group member could be indirectly connected
through one, two, three or more others. Closeness central-
ity better reflects an individual’s potential influence on the
entire group and is particularly relevant if the number of
transmission steps matters, e.g. in terms of time and
how fast transmission can occur. High closeness centrality
indicates an infected animal’s potential to quickly spread
a disease to the entire group, not just to immediate neigh-
bours as with degree centrality. Betweenness centrality also
incorporates indirect interactions, but it reflects the
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number of shortest paths between every other pair of an-
imals in the network on which a focal animal lies. Be-
tweenness thus indicates how important an animal is as
a point of social connection and transfer. To contain dis-
ease transmission, it may be most effective to focus treat-
ments on individuals with high betweenness. Besides
being important in transfer, animals with high between-
ness are likely to be important for group stability, and
their removal (by death or dispersal) may fragment the
group into smaller subgroups (McComb et al. 2001; Lus-
seau & Newman 2004; Flack et al. 2006). These three cen-
trality concepts reflect different aspects of sociality, and
are sometimes, but not always, correlated (Fig. 2). Another
measure of centrality is ‘eigenvector centrality’ (Bonacich
1987), which factors in the importance of neighbours in
determining centrality and may be more appropriate for
weighted networks and association data (Newman 2004).
Intermediate Measures
(a)

(b)
Some network measures identify the presence of sub-
groups in the network, reflecting the distribution of the
ties (Fig. 3). We call these ‘intermediate’ measures because
they describe the relationships beyond a single individual
(however, note that in very large networks, they will still
be relatively local descriptors). Clustering coefficient quan-
tifies the density of relationships among a focal node’s
neighbours (excluding the focal individual). The number
of existing ties between neighbours is divided by the max-
imal possible number of such ties (e.g. if an individual has
four neighbours, these neighbours may have (4 � 3)/2 ¼ 6
relationships among themselves). Clustering coefficient
describes how densely (or sparsely) the network is clus-
tered around the focal individual. Cliquishness describes
to what extent the network is divided into cohesive sub-
groups. A clique is a set of nodes where each node is
directly tied to each other (Fig. 3b), but less strict condi-
tions can be defined as well. (A similar concept of ‘com-
partment’ has been used extensively in ecology, e.g.
Krause et al. 2003.) The existence of subgroups may affect
network robustness to fragmentation. With strong sub-
grouping, a network may be more quickly fragmented
by removing a single or few animals or ties (e.g. by block-
ing a communication pathway). Higher clustering or
cliquishness could also mean that transmission (e.g. of
disease) would be very fast and complete within a sub-
group, but slower throughout the entire network because
transmission events would tend to stay within a subgroup.
This could be beneficial or detrimental, for instance, by
reducing disease or information transfer.
Group Measures
Figure 3. Two 10-node networks: (a) with no distinct subgroups,

and (b) with two distinct subgroups (two cliques, i.e. groups of
nodes with all possible ties among them, forming two complete

subgraphs).
Group measures (calculated from the set of individual
measures or defined only at the network level) describe
aspects of overall network structure. Importantly, they go
beyond simple measures of group size or composition,
which are independent of the network of relationships.
Diameter, mentioned previously, is the longest path length
in the network (so if the diameter is n, no two individuals
are more than n steps away from each other), and is a very
basic measure of how well connected the network is. Gen-
erally, individuals in a group with a smaller diameter are
connected to each other through fewer intermediates,
and transfer between individuals is potentially faster than
in a group with larger diameter. The average path length
also gives a general idea of the network’s overall connected-
ness, and a shorter average path length again suggests
potential for quicker transfer among all group members.

Cohesion is defined in many ways, both colloquially
and in the network literature, but generally, the term
describes how well a group is connected based on more
sophisticated calculations. One measure of cohesion is
density, the number of ties present divided by the number
of possible ties in the network. Density is generally calcu-
lated only for unweighted networks, and while some
methods to measure density in weighted networks have
been proposed (Wasserman & Faust 1994), they are not
universally accepted, and we do not address them here.
A group with higher density has more ties per individual
than a group with lower density and therefore, is theoret-
ically more cohesive. Another important concept is transi-
tivity, which is the idea that if A has a relationship with B,
and B has a relationship with C, then A has a relationship
with C as well. Also important is the idea of reciprocity,
which reflects how many of the relationships are mutual.
Together, transitivity and reciprocity tell us more about
how well balanced relationships are (Fig. 1b). For example,
two groups could have the same density, but one could
have higher reciprocity, indicating that the interactions
are more balanced overall. Greater cohesion, transitivity
and reciprocity might all suggest a greater potential for
transmission within a network. With affiliative relation-
ships, greater cohesion, transitivity and reciprocity might
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suggest a more tightly knit social group, in which positive
interactions are consistent among triads and are mutual.
ISSUES WHEN APPLYING SOCIAL NETWORK

ANALYSIS
Spatial and Temporal Limitations
Space constrains network structure, limiting the ways in
which animals can construct their social networks and
making some relationships and structures impossible or
less likely than others. For example, locomotor ability,
habitat topology and resource distribution will all in-
fluence the possible set of relationships. It is important
to understand whether the observed social networks are
distinct from relationships explained solely by shared
space use (see Lusseau et al. 2006). Temporal limitations
also arise because networks reflect the state of relation-
ships in a group as if it were at one point in time, even if
the data were collected over a longer period. Not all of
the relationships represented may have existed at the
same time, nor indeed may have all the individuals been
together simultaneously. Network analysis assumes that
the relationships included are relatively stable over time,
and this assumption must be understood when using
and interpreting networks. To examine network dynamics,
one must look at how a network changes over time (e.g. by
reconstructing and analysing the network at different
points in time), or infer dynamics from the observed struc-
ture at only one point in time. One possible way to exam-
ine how temporal limitations may change network
measures is to use permutation methods (Bejder et al.
1998; Whitehead 1999; Whitehead et al. 2005) to compare
network measures calculated from permuted networks
with measures calculated from the original networks.
Defining the Network
The decision about which individuals to include in
a network analysis will affect the subsequent network
structure and parameter estimates. Including too few
individuals may give a truncated picture of the network,
while including too many individuals may result in an
unwieldy or highly fragmented network. In a fragmented
network, the network is split into two or more uncon-
nected subgroups, between which there are no interac-
tions or communication. A number of network statistics
cannot be defined and calculated for unconnected net-
works (e.g. diameter), while others generate misleading
artefacts (Kossinets 2006). Thus, it is essential to carefully
define a network in a way that reflects a biologically rele-
vant level of resolution. For example, if the question is
how social structure differs between populations of ani-
mals on isolated islands, it would be appropriate to define
each island as a network, whether or not each is frag-
mented, in order to make comparisons between islands.
However, if the question is how quickly information
might be passed among connected individuals, then it
would be inappropriate to look at a fragmented popula-
tion (where, by definition, information cannot be
transmitted). In this case, one might use connected com-
ponents (sets of individuals that can all be tied to each
other, whether directly or through intermediates) as the
unit of analysis.
Robustness of Parameter Estimates
All descriptions of sociality are generated by sampling
behaviour, and sampling might affect our ability to estimate
network parameters. Missing data can significantly alter
network measures (Kossinets 2006), although centrality
measures calculated from subsets of the data may retain
their relative relationships to each other despite sometimes
large absolute differences (Costenbader & Valente 2003).
Removal trials on simulated data showed predictable trends
in the response of centrality measures, suggesting that con-
fidence intervals can be established (Borgatti et al. 2006a).

To examine how sampling affects real networks, we
conducted a series of removal trials on data collected by
observing social interactions in yellow-bellied marmots,
Marmota flaviventris, a facultatively social, ground-dwell-
ing, sciurid rodent. Marmots in and around the Rocky
Mountain Biological Laboratory, Colorado, were individu-
ally marked and systematically observed for the occur-
rence and nature of all social interactions (see Blumstein
et al. 2004 for methods). We tested the robustness of sev-
eral network measures by calculating the network mea-
sures with the complete data set of all observed social
interactions (we defined relationships as social inter-
actions), followed by random removal of 10%, 20%,
30%, etc., up to 90% of the observations. Each removal
trial was replicated 10 times, and the measures were recal-
culated for each subset. Our data were directed and
weighted. We used analysis of variance (ANOVA) to deter-
mine what percentage of data removal resulted in a signif-
icant change in the network measure of interest. While
these data are technically nonindependent, ANOVA is use-
ful in a boot-strapping study such as this. The results of
these removal trials for individual and group measures
are presented in Tables 2 and 3. The standard error within
each trial was low, indicating that, for a given sample size,
network parameters were measured precisely.

Overall, many network measures were relatively robust to
reduced sampling effort, suggesting that, in this system, we
were sampling sufficiently to obtain representative network
measures. In general, measures calculated only from direct
interactions (e.g. degree centrality) were more sensitive to
data removal than were measures calculated from indirect
interactions (e.g. closeness and betweenness). However,
measures incorporating indirect interactions also showed
less consistent trends. This suggests that degree will steadily
decrease as more and more interactions are removed, but
changes in indirect interactions will be less predictable.
Diameter was extremely robust, probably because it pro-
vides little detail about the relationships in the network as
a whole and was calculated based on redundant paths (i.e. if
there are multiple relationships between two individuals,
removing all but one of those interactions will still make no
difference in the diameter). Cohesion (calculated based on
reciprocity) was also robust, although asymmetries tended



Table 2. The effect of randomly removing observations on estimates of individual network parameters

ID number

Outdegree:

weighted

Indegree:

weighted

Node degree:

unweighted

Node degree:

weighted

Closeness

centrality

Betweenness

centrality

1382e1397 30 30 50 30 70 90
4016e4070 0 0 60 0 60 80
4026e4050 0 0 70 0 60 60
4079e4033 20 20 60 20 90 80
4682e4698 0 20 50 0 60 90
4703e4002 0 0 70 0 90 60
4711e4706 20 20 60 30 60 90
4715e4716 20 0 70 0 60 50
4844e4853 0 20 70 0 90 80

Average 10% 12% 62% 9% 71% 76%

Marmot social groups were defined based on spatial overlap (see Nanayakkara & Blumstein 2003). Data are the percentage of the original data
that could be removed randomly with no significant (P > 0.05) difference in the value of the network measure.
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to be exaggerated with less data. Density was less robust to
data removal because as the number of interactions de-
creased, the potential number of interactions did not, so this
measure necessarily changed quickly with data removal.
Other Considerations
Using network measures in combination will develop
a more comprehensive understanding of social relation-
ships. For example, using individual, intermediate and
group measures together will provide a broader view of
overall social behaviour. The type of relationship data
used should depend on the questions being asked and the
biology of the system under study. For instance, focusing
on grooming bouts is an appropriate way to study
affiliative associations in primates (Sade & Dow 1994;
Silk et al. 2003), whereas agonistic interactions are used
to examine dominance hierarchies (Appleby 1983; Archie
et al. 2006).

Whether weighted, directed, and signed data are used
will also affect the measures calculated (Vasas & Jordán
2006). While weighted and directed information should
give a more detailed picture of group structure and dy-
namics (Newman 2004), it may be more difficult to collect
such data, and more detailed information may also be
more sensitive to reduced sampling. If questions can be
Table 3. The effect of randomly removing observations on estimates
of group-level network parameters

Group Diameter
Density:

unweighted
Density:
weighted Cohesion

BB 60 30 0 30
CC 80 0 0 20
GG 90 20 0 20
II 40 20 0 40
JJ 80 0 0 20
PP 80 20 0 30

Average 72% 15% 0% 27%

Marmot social groups were defined based on spatial overlap (see Na-
nayakkara & Blumstein 2003). Data are the percentage of the origi-
nal data that could be removed randomly with no significant
(P > 0.05) difference in the value of the network measure.
answered just by the presence or absence of relationships,
then binary data may be sufficient. However, weighted or
directed information is indispensable if the question un-
der study concerns the relative strength of relationships
or the direction of transmission in the network.

Some network measures are calculated from shortest
theoretical path lengths, but real transmission might not
occur along these paths. Whether individuals perceive
only their local neighbourhood or the entire network,
along with the extent of an individual’s control over
transmission, can drastically change network dynamics.
Given more knowledge about network structure, an in-
dividual might choose (or avoid) certain paths. In some
animal groups, contact and transmission events may
depend largely on chance. In these cases, it is unlikely
for transmission to be along the most efficient path, and
transmission may be more like diffusion. Additionally, the
empirical effects of removing an important individual
from a social group could be different from that predicted
by simulated removals (Flack et al. 2006).
AREAS FOR FURTHER RESEARCH

Here we highlight some areas in which we feel social
network analysis will bring immediate benefits (see also
Croft et al. 2007).
Defining Social Groups
A nontrivial question is how to define a social group,
and this will vary depending on the question. Social
network analysis offers an alternate way to define animal
social groups based on social relationships, rather than on
spatial distribution or proximity. In nonhuman animals,
especially those that are less social, it is also often difficult
to distinguish between simple spatial and active social
associations. Lusseau et al. (2006) showed that social rela-
tionships can be used to differentiate between the two, and
groups defined by social relationships may be different
from those based only on spatial proximity. Some recently
developed methods are effective for picking out natural
divisions or subgroups in networks (Newman & Girvan
2004; Newman 2006).
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Identifying the Fitness Consequences
of Sociality
Much is still not well understood about the fitness
consequences of social relationships, and direct fitness
correlates are rarely shown (but see Silk et al. 2003). In hu-
mans, the structure of an individual’s social network can
affect measures of health (Berkman 1984; Uchino et al.
1996; Cattell 2001; Friedman & Aral 2001). Quantitative
network measures can be correlated with fitness measures
(e.g. reproductive success or parasites) to identify possible
selective pressures acting on specific aspects of sociality.
For example, if more socially central animals have signifi-
cantly higher reproductive success, this would suggest
a role of sociality in increasing fitness. Alternatively, an
animal that has relationships with more different individ-
uals could also have increased exposure to pathogens and
might suffer higher risk of disease or parasites as a fitness
cost. Social network analysis offers a way to re-examine fit-
ness consequences and should contribute novel insights
into the evolution and maintenance of sociality. Studying
facultatively social species will be particularly important
because they can illustrate how variable social traits are
correlated with fitness trade-offs.
Identifying Important Individuals and Their
Structural Roles
Group members may have different social roles or
importance to the group (McComb et al. 2001; Lusseau
& Newman 2004; Flack et al. 2005, 2006). Social network
analysis offers quantitative measures of sociality that can
be standardized for group size and possibly used to de-
scribe and compare social complexity of individuals and
groups across different taxa. While there are issues with
comparing networks of very different sizes (Faust 2006),
we feel that this is still a useful starting point for compar-
ison. Sociometric analysis can provide an objective, sys-
tematic way to determine dominance roles (Archie et al.
2006), and centrality measures can be used to identify im-
portant individuals in animal social groups (Lusseau
2003). In the case of wasp colonies, several centrality in-
dexes have been tested for usefulness as predictors of
queen choice, and results suggest that a directed meso-
scale index is the best (A. Bhadra, R. Gadagkar & F. Jordán,
unpublished data). These measures provide different ways
to define importance, and different measures may produce
different rankings (Jordán et al. 2006). The most appropri-
ate measure will likely depend on the question, but im-
portantly, network measures provide a way to describe
a continuum of social complexity that captures the social
relationships within the group.
Developing a Comprehensive Understanding
of Social Network Structure
Describing social networks in more species is essential
for developing a comparative understanding of sociality
and how it functions in different taxa, which will in turn
allow us to better understand the evolution of sociality.
This requires more detailed and long-term data on social
relationships, which may be difficult to obtain. However,
some relational data exist (e.g. in many detailed studies of
nonhuman primates) but have not been analysed in
a network context, and it would be relatively easy to
analyse already collected data sets. Types of relational data
appropriate for network analysis include social interac-
tions or associations.

Social insects are an ideal system in which to apply
social network analysis (Fewell 2003), and some work on
them is now underway. While classic studies showed
that ant colonies may design their activity performance
charts according to reliability theoretical principles (Oster
& Wilson 1978), recent results show that network analysis
is a more efficient approach to characterize and quantify
the social behaviour (e.g. queen choice) of primitively
eusocial tropical paper wasps and to better understand
differences between closely related species (A. Bhadra,
R. Gadagkar & F. Jordán, unpublished data).

Other preliminary comparative results are also in-
triguing. Faust & Skvoretz (2002) found similarities in
networks across very different species, while Lusseau &
Newman (2004) found a distinct difference in assortativ-
ity between dolphin and human networks. There are
also descriptions of the similarities and differences be-
tween social networks of two wasp species and students
in classrooms (A. Bhadra, R. Gadagkar & F. Jordán, un-
published data). These initial comparative studies show
the wide applicability and promise of social network
analysis for animal studies.
Identifying Key Characteristics of Stable
Groups
Trait group selection models of social evolution focus on
traits that are expressed at the group level (Wilson 1975;
Wilson & Dugatkin 1997). Social network analysis offers
tools to identify group social traits, and so offers a way
to gain novel insights into higher-level selection processes
by identifying which network characteristics are impor-
tant for group success. For instance, if groups with higher
cohesion tended to out-produce or persist longer than
groups with lower cohesion, it would suggest an impor-
tant role for group cohesion in shaping the evolution of
sociality. Used in conjunction with lagged association
rates (Whitehead 1995) or other autoregressive methods
to address temporal patterning (Whitehead 1997), social
network analysis can be used to model group stability,
but because models may not always accurately reflect em-
pirical results, real tests of what group characteristics best
promote stability will only come with more detailed longi-
tudinal data.
Quantifying Anthropogenic Effects
on Animals
Social network analysis could be helpful in wildlife
conservation because it offers novel methods to docu-
ment anthropogenic effects on animal social groups
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(Tarlow & Blumstein 2007), and because it helps us bet-
ter understand the mechanisms of disease transmission.
Comparing animal social networks in disturbed and un-
disturbed areas could highlight changes in network
structure that could have important fitness conse-
quences. For some animals, disruptions in social struc-
ture may have negative effects in and of themselves
(Flack et al. 2006) or lead to consequences for commu-
nication or mating, which can be better understood
through social network analysis.
Understanding Disease Transmission
in Natural Populations
There is an extensive literature on the application of
networks to understand human epidemiology, making it
a natural application to wildlife populations. The spread
of different diseases may depend differentially on network
structure because of varied modes of transmission (e.g.
STDs versus nonsexually transmitted diseases: Altizer et al.
2003). As described above, social network analysis could
help clarify to what degree the spread of various patho-
gens depends on social relationships in animals. Further-
more, identifying socially central animals could suggest
which group members might be most influential in dis-
ease transfer. Some studies have already begun to apply
network theory to better understand disease transmission
in natural populations (Corner et al. 2003; Cross et al.
2004), and further research in this direction will be highly
beneficial.
CONCLUSIONS

With this review, we hope to have illustrated the great
potential that social network analysis has for the study of
animal social behaviour. We expect that in the next
decade there will be a fundamental increase in our
understanding of social relationships and behaviour re-
sulting from the wide-spread adoption of social network
analyses, and we look forward to these insights.
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Solé, R. V. & Montoya, J. M. 2001. Complexity and fragility in ecolog-
ical networks. Proceedings of the Royal Society of London, Series B,

268, 2039e2045.

Strogatz, S. H. 2001. Exploring complex networks. Nature, 410,

268e276.

Swan, J., Newell, S., Scarbrough, H. & Hislop, D. 1999. Knowledge

management and innovation: networks and networking. Journal of

Knowledge Management, 3, 262e275.
Tarlow, E. & Blumstein, D. T. 2007. Evaluating methods to quantify

anthropogenic stressors on animals. Applied Animal Behaviour

Science, 102, 429e451.

Uchino, B. N., Cacioppo, J. T. & Kiecolt-Glaser, J. K. 1996. The re-

lationship between social support and physiological processes:
a review with emphasis on underlying mechanisms and implica-

tions for health. Psychological Bulletin, 119, 488e531.

Vasas, V. & Jordán, F. 2006. Topological keystone species in ecolog-

ical interaction networks: considering link quality and non-trophic

effects. Ecological Modelling, 196, 365e378.

de Vries, H., Stevens, J. M. G. & Vervaecke, H. 2006. Measuring

and testing the steepness of dominance hierarchies. Animal Behav-

iour, 71, 585e592.

Wasserman, S. & Faust, K. 1994. Social Network Analysis: Methods

and Applications. New York: Cambridge University Press.

Watts, D. J. 1999. Networks, dynamics, and the small-world

phenomenon. American Journal of Sociology, 105, 493e527.

Watts, D. J. 2003. Six Degrees: the Science of a Connected Age. New

York: W.W. Norton.

Watts, D. J. & Strogatz, S. H. 1998. Collective dynamics of ‘small-

world’ networks. Nature, 393, 440e442.

Whitehead, H. 1995. Investigating structure and temporal scale in

social organizations using identified individuals. Behavioral Ecology,
6, 199e208.

Whitehead, H. 1997. Analysing animal social structure. Animal

Behaviour, 53, 1053e1067.

Whitehead, H. 1999. Testing association patterns of social animals.

Animal Behaviour, 57, F26eF29.

Whitehead, H. 2006. Programs for the Analysis of Animal Social Struc-

ture (SOCPROG). Halifax, Nova Scotia: Dalhousie University.
<http://myweb.dal.ca/hwhitehe/social.htm>.

Whitehead, H. 2008. Analyzing Animal Societies: Quantitative
Methods for Vertebrate Social Analysis. Chicago: University of

Chicago Press.

Whitehead, H., Bejder, L. & Ottensmeyer, C. A. 2005. Testing as-

sociation patterns; issues arising and extensions. Animal Behaviour,

69, e1ee6.

Wilson, D. S. 1975. A theory of group selection. Proceedings of the

National Academy of Sciences, U.S.A., 72, 143e146.

Wilson, D. S. & Dugatkin, L. A. 1997. Group selection and assorta-

tive interactions. American Naturalist, 149, 336e351.

http://myweb.dal.ca/hwhitehe/social.htm

	Social network analysis of animal behaviour: a promising tool for the study of sociality
	Network theory
	Previous network studies
	Network measures
	Individual Measures
	Intermediate Measures
	Group Measures

	Issues when applying social network analysis
	Spatial and Temporal Limitations
	Defining the Network
	Robustness of Parameter Estimates
	Other Considerations

	Areas for further research
	Defining Social Groups
	Identifying the Fitness Consequences ofnbspSociality
	Identifying Important Individuals and Their Structural Roles
	Developing a Comprehensive Understanding of Social Network Structure
	Identifying Key Characteristics of Stable Groups
	Quantifying Anthropogenic Effects onnbspAnimals
	Understanding Disease Transmission innbspNatural Populations

	Conclusions
	Acknowledgments
	References


