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ScienceDirect
Applying mechanistic insights from animal behavior to wildlife

management and conservation biology problems has had

documented successes as well as much promise. For wildlife

managers seeking to control problem animals, or conservation

biologists seeking to increase the number of threatened or

endangered species, a fundamental understanding of sensory

mechanisms provides the levers that can modify behavior and

influence higher-level population processes. We review recent

insights and describe future challenges in using and evaluating

sensory mechanisms within a conservation behavior

framework.
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Introduction
Conservation behavior is an applied discipline that requires

both an understanding of biological phenomena and then

the effective application of those phenomena to solve

conservation and management problems [1��]. The chal-

lenges of conservation are to stabilize or increase the size of

declining populations while the challenges of wildlife

management are to control animal movement and to reduce

overabundant populations. Much recent work has focused

on identifying sensory mechanisms underlying behavior,

particularly those that may have demographic conse-

quences and, in recent years, those that act at the interface

of anthropogenically-driven rapid environmental change.

Why a mechanistic view?
From an applied perspective, mechanisms can be viewed

as levers that can be used to modify behavioral or demo-

graphic outcomes. Historically, wildlife managers have
www.sciencedirect.com 
aimed to respond to wildlife population trends. Declining

populations were protected and their population sizes

augmented, and efforts have been made to control or

eradicate out-breaking or invasive populations. However,

the sheer magnitude and rate of the biodiversity crisis our

world faces is making most of these efforts futile and

there is a growing realization that in order to have a

chance at stopping the next massive species extinction,

we cannot just respond to populations’ trends, but instead

seek to understand them, predict them, and in some cases

manipulate them. To do so, we need to link the decision-

making process of individual organisms with population

and community dynamics. In other words, a mechanistic

approach to conservation is required [2].

However, finding the mechanistic underpinning of wild-

life behavior is often challenging, and is still frequently

left as a vague black box. Conservation behavior

[1��,3,4��], conservation genetics [5] and more recently

conservation physiology [6,7] have all been developed to

provide wildlife managers with specific mechanistic tools,

which allow for better planning and decision making and

aim to improve the success of conservation and manage-

ment programs. Investigations of sensory mechanisms

and their application to wildlife conservation and man-

agement have been rapidly increasing in the past few

years, and are becoming a vital tool in the conservatio-

nist’s toolbox. Below we review selected recent highlights

and emerging trends from this growing literature on the

relationships between sensory mechanisms, behavior, and

conservation or wildlife management (see Table 1 for

summary and additional examples).

A few examples of how identifying sensory
mechanisms is being used to understand
conservation behavior problems
Reducing vehicular collisions

Animals are routinely struck by cars, aircrafts and other

vehicles and these impacts are detrimental to both wild-

life and humans [8�]. Vulnerability to vehicular collisions

has been studied by looking for life history and natural

history correlates of mortality as well as by identifying

sensory mechanisms involved in detecting and fleeing

from rapidly approaching objects. For instance, Cook and

Blumstein [9] found that omnivorous mammals and her-

bivorous birds were more likely to be killed by cars. But

mechanistic approaches that focus on animals’ sensory

physiology are particularly promising because they, some-

what uniquely, offer the promise of developing effective

mitigation strategies.
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Table 1

Some recent examples, published between 2013 and 2015, of wildlife sensory mechanisms studies that either inform us of a conservation

concern or provide a management and mitigation tool

Conservation or management problem Sensory

mechanisms

involved

Suggested solution References

Collisions of birds with vehicles (cars and trucks) Visual Reducing speed of vehicles and

making them more conspicuous (e.g.,

through the use of flashing lights)

[14,48]

Collisions of birds with airplanes Visual Adjusting frequency and brightness of

plane’s lights to the birds’ visual field

[15,49]

Advancements in street light technology and shifts to whiter

light sources such as LED is changing the balance among

nocturnal predators and prey

Visual Designing street lamps with eco-

friendly spectral light composition

[50–52]

Artificial night lighting alters the phenology of dawn and

dusk singing in European song birds

Visual Reduce the use and intensity of artificial

night lighting

[53]

Artificial lights near the coast alters the composition of

marine epifaunal communities

Visual Reduce the use and intensity of artificial

night lighting

[54]

Artificially-lit bridge attracts mayflies, while the polarized light

properties of its surface promote oviposition on its asphalt

surface, reducing fitness to zero.

Visual Locating the bridge’s lights lower and

closer to the surface of the road and

shading them

[55]

Birds causing crops loss and colliding with planes Auditory Broadcasting directional sound to

interfere with communications and

alarm calls of the birds in order to deter

them

[56]

Urban noise undermines female mate preferences in birds Auditory Reduce noise levels [57]

Anthropogenic noise reduced the efficiency of anti-predatory

behavior and increases stress in European eels

Auditory Reduce noise levels [24]

Anthropogenic noise from ships reduce foraging efficiency in

fish and other marine species

Auditory Reduce noise levels [19,23]

Anthropogenic noise disturbs communication and increases

stress in a variety of species

Auditory Reduce noise level and when possible

adjust auditory output to minimize

disturbance

[17–21,58]

Noise from gas wells alters activity levels and echolocation

calls in bat species

Auditory Built sound-damping walls around

compressor stations

[59]

Communal roosting site act as an ecological trap by attracting

conspecific to their scent regardless of the colony’s fate

Olfactory None suggested [60]

Higher temperatures due to global warming reduced the

efficacy of sexual scent signals in rock lizards

Olfactory None suggested [61]
Tyrrell and Fernández-Juricic [10] reviewed — from a

visual sensory physiology perspective — how variation in

the degree of visual coverage around a prey species’ head,

its visual acuity, its temporal visual resolution, the num-

ber and characteristics of fovea (areas in the eye with

particularly acute visual discrimination), the ability to

detect motion, and the ability to resolve stimuli against

their background, may affect predator detection abilities

and escape behavior. Because detecting an approaching

vehicle requires the same visual processes, and because

animals respond similarly toward approaching vehicles

(e.g. [11]), the sensory approach is vital toward developing

more predictive models and developing strategies to

reduce collisions.

Animals could flee approaching threats in at least two

ways. They could maintain a spatial margin of safety by

focusing on the distance the threat is from them and thus

flee at some threshold distance, or they could maintain a

temporal margin of safety by estimating the time to

impact of the approaching threat and fleeing at some
Current Opinion in Behavioral Sciences 2015, 6:13–18 
expected time to impact (e.g. [12,13]). By employing

video playbacks of approaching vehicles to brown-headed

cowbirds, DeVault et al. [14] found that cowbirds used a

distance-based rather than a temporal-based escape strat-

egy: they appeared to flee when objects were a certain

distance away. However, this assessment mechanism was

overwhelmed by rapidly approaching vehicles (>120 km/

hour) which cowbirds did not flee. The authors concluded

that the evolved sensory abilities were mismatched to

these novel rapidly moving objects and this made cow-

birds vulnerable to being struck by quickly moving planes

and cars driving at highway speeds. Suggested manage-

ment strategies to mitigate such responses include reduc-

ing speed limits and making objects (like planes which

cannot be slowed) more obvious by using flashing lights

[15].

Mitigating anthropogenic noise and light pollution

Humans, and the machines they invented, have had a

profound effect on background noise levels. Increased

acoustic noise levels may reduce the distance and area
www.sciencedirect.com
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over which acoustic signals can be perceived by animals

[16]) and this has been demonstrated to interfere with

signaling behavior and communication (e.g. [17,18]), and

reduce foraging efficiency (e.g. [19]). Anthropogenic

noise can increase acute or chronic physiological stress

(e.g. [20,21]), and noise has also been shown to distract

prey and reduce their ability to respond to approaching

threats [22–24]. To reduce these potentially extremely

deleterious impacts, as well as to use noise strategically

to repel animals from certain locations, a mechanistic

understanding is essential. Indeed, recent reviews have

specifically sought to gain a mechanistic insight into the

effects of noise pollution on animals [25,26�]. Researchers

identify the acoustic stimuli that individuals react to, and

how these stimuli elicit behavioral and physiological

responses. For example, is the behavioral change the

result of the sound being perceived as a threat, or is it

due to interference with cue detection? Such a sensory

mechanistic approach allows the creation of conceptual

frameworks that may enable wildlife managers to correct-

ly identify and understand deleterious effects of noise

pollution on various organisms and choose an appropriate

method to mitigate these effects [26�].

The need for a mechanistic point of view is perhaps even

more evident in the case of light pollution. Artificial light

is increasingly changing all aspects of natural light

regimes [27�]. The impacts are wide-spread and include

extensive changes to species reproduction, orientation,

predator–prey interactions and communication in both

terrestrial and marine environments [28,29]. Gaston et al.
[27�] have recently proposed a mechanistic framework

which examines the ways in which artificial light alters

natural light regimes (spatially, temporally, and across

wavelengths) as well as the ways in which light influ-

ences biological systems, in particular the distinction

between light (or lack of light) as resource and light as

a source of information. Species react differently to

artificial light because they differ in the wavelength to

which their visual systems are most sensitive and respon-

sive [30]. By integrating knowledge of how species’

detect and respond to artificial light, we can develop

novel mitigation tools to reduce the deleterious effects of

light pollution.

Mechanisms underlying species’ ability to
respond to human-induced rapid
environmental change
A large and growing recent body of literature is looking at

behavioral responses to human-induced rapid environ-

mental change (HIREC). These anthropogenic changes

include habitat loss, the spread of invasive species, pol-

lution and climate change, and are all characterized by

being rapid enough to put organisms in evolutionary

novel conditions which natural selection has not prepared

them for [31]. Given that ‘the first line of defense’ against

a changing environment is usually behavioral, research on
www.sciencedirect.com 
behavioral responses to HIREC is rapidly gaining popu-

larity (e.g. [32–34,35��]). Studies on behavioral responses

to HIREC focus on two main mechanistic questions.

The first is how animals adjust their behavior as a result of

HIREC and what the impacts of these behavioral adjust-

ments are [35��]. In order to answer this question,

researchers strive to understand the mechanisms of be-

havioral plasticity, its influence on population persistence

and the subsequent evolutionary response of populations

[34,36,37]. While behavioral plasticity may buffer the

effects of HIREC in some species, in others, maladaptive

behaviors can lead into ‘evolutionary traps’ by increasing

the mismatch between environmental cues and condi-

tions that have historically been associated with these

cues [33]. Thus, knowledge on how animals perceive and

respond to environmental cues is paramount for any

attempt to mitigate evolutionary traps [38].

The second question logically follows: why do some

species (and individuals) respond well to HIREC, where-

as others do not? [39��,40]. Here researchers strive to

understand variation in behavioral responses using a

variety of established theories such as signal detection

theory or adaptive plasticity theory with the goal of

generating predictions on which species are more vulner-

able to the negative effects of HIREC, as well as creating

tools to effectively eliminate or mitigate evolutionary

traps [33,38,40].

Evaluation: does applying behavioral
principles increase conservation efficacy?
We need more than an academic understanding of

sensory mechanisms if we are to effectively apply

this knowledge to solve critical management issues.

Many conservation behavior papers only describe the

potential importance of behavioral knowledge to conser-

vation issues, but stopping there has been challenged

[41,42]. Excitingly, some studies have begun to apply

mechanistic knowledge to try to solve specific manage-

ment problems (see examples in the previous sections),

and this is an essential step. But we must go even beyond

applying it; we must evaluate it. Proper evaluation is

a fundamental aspect of effective conservation behavior

[1��].

Following a larger trend (www.conservationevidence.

com, www.environmentalevidence.org), recent conserva-

tion behavior work has highlighted the importance of

building in evaluation into management actions and

estimating the efficacy of these actions. This can work

several ways. First, there can be formal experiments

conducted in an adaptive management framework [43]

to identify those interventions that work and those that do

not. Second, there can be systematic reviews and formal

meta-analyses [44,45�] of published literature to estimate

effect sizes and efficacy.
Current Opinion in Behavioral Sciences 2015, 6:13–18
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Figure 1
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A schema through which a mechanistic knowledge of animal behavior (sensory or otherwise) can be applied to solve wildlife conservation or

management problems. If the intervention is effective it must be evaluated against other possible interventions in a formal comparative efficiency

analysis. The most cost-effective intervention should be the one used.
Both evaluation approaches are essential to properly

translate the many potential mechanistic insights for wild-

life conservation and management into effective conserva-

tion and management interventions. However, one should

not stop there; formal comparative effectiveness analyses

[46,47] are also needed (Figure 1). If it is much more

costly to use a conservation behavior intervention than

some other option, all else being equal, the other option

should be preferred.

Conclusions
We suggest that by adopting a mechanistic approach, in

particular, one that focuses on sensory mechanisms, be-

havioral biologists can develop potential tools to solve

wildlife conservation and management problems. We

have reviewed some exciting recent discoveries that have

adopted a mechanistic approach and we have outlined a

schema through which behavioral biologists aiming to

translate behavioral insights into management tools

should adopt. The field of conservation behavior does

not have the solutions for all conservation problems, but it

may offer extremely useful tools to solve certain pro-

blems. The coming years will help identify where these

tools can be most profitably applied.
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