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On encountering a predator, many species emit potentially risky vocalizations known as alarm calls. We evaluated the relative
importance of two adaptive hypotheses on the evolution of calling: (1) communicating to predators, which may function by
deterring pursuit and hence increasing individual survival, and (2) an alternative nepotistic hypothesis for alarm calling whereby
callers obtain direct and indirect fitness by warning relatives. Focusing on 209 species of rodents, we found significant
associations between diurnality and alarm calling, living socially and alarm calling, and diurnality and sociality. Diurnality,
however, accounted for nearly three times as much variation in whether or not a species alarm called than did sociality.
Phylogenetic tests revealed that the evolution of diurnality preceded the evolution of alarm calling, and that the evolutions of
diurnality and sociality were unrelated. Our results are consistent with the hypothesis that alarm communication evolved to
communicate to predators. If so, then nepotistic benefits, although important for the maintenance of alarm calling in some
rodents, may be relatively less important in its evolution. Key words: alarm calling, evolution, rodent behavior. [Behav Ecol]

Why animals emit potentially risky alarm calls has puzzled
evolutionary biologists for decades (Klump and Shalter,

1984; Maynard Smith, 1965), and understanding the adaptive
utility of alarm communication has been influential in
explaining the evolution of social behavior through kin
selection (Keller and Reeve, 2002). Since Sherman’s (1977)
and Dunford’s (1977) classic studies that demonstrated
nepotistic benefits from calling in ground squirrels, others
have found evidence that animals obtain both direct and
indirect fitness (Brown, 1987) by emitting potentially risky
alarm vocalizations (Blumstein et al., 1997; Hoogland, 1995;
Schwagmeyer, 1980). It is therefore surprising that the
evolutionary origin of alarm calling has remained virtually
unexplored.
The methods of studying current adaptive utility are,

theoretically, straightforward and involve correlative and
experimental components: (1) hypothesize an adaptive
function, (2) search for correlations between variation in
trait expression and evolutionary fitness, and (3) manipulate
trait expression to demonstrate causality (Tinbergen, 1963;
Tinbergen et al., 1962). Demonstrating the initial conditions
favoring the evolution of a trait are, however, explicitly cor-
relative. Evolutionary questions, such as these, are studied by
using the comparative method in which the distribution of
traits among many species is identified and hypotheses about
coevolution are formally tested (Brooks and McLennan,
1991; Harvey and Pagel, 1991; Maddison and Maddison,
2001). Evolution is cumulative, and the conditions favoring
the initial evolution of a trait and its subsequent maintenance
need not be identical (Darwin, 1859; Reeve and Sherman,
1993). The challenge to understanding the initial evolution-
ary function is to generate hypotheses and variables suitable
for comparative analysis that test complementary adaptive
hypotheses. There are two major nonexclusive hypotheses to
explain the current adaptive utility of alarm calling: commu-
nicating to predators to discourage pursuit (Hasson, 1991),

and communicating to conspecifics to warn them about
danger (Maynard Smith, 1965, Zuberbühler et al., 1999).
Abundant evidence suggests that animals reduce risk to

themselves when emitting alarm signals (Blumstein, 1999;
Hasson, 1991) and, under certain circumstances, do not
produce alarm signals because by doing so they would make
themselves even more vulnerable to predators (Caro, 1995).
Because hunting success often requires an element of surprise,
individuals may alarm call to alert the potential predator that it
has been detected. Alarm signals may also transmit informa-
tion to the predator about the caller’s physical ability to elude
capture or defend itself (Fitzgibbon and Fanshawe, 1988). By
deterring a predator’s attack, a calling individual gains
personal fitness benefits. If we assume that alarm calling
evolved to communicate to predators, we would expect that
calling individuals would try to minimize their risk while
calling. One way to do so would be to vocalize only when it is
possible to locate and track predators visually, because visual
predator detection may more accurately assess the risk of
predation (Lima, 1988a,b). Because there is evidence in several
species that prey visually assess the relative risk of predation
and only call when they are not subjected to excessive risk
(Blumstein and Armitage, 1997; Wolff, 1980), we would predict
alarm calling species to be diurnal, and alarm calling to be rare
or absent in nocturnal species, which are constrained in their
ability to reliably assess and manage predation risk.
The intrinsic risk of alarm calling may also be offset by the

potential for nepotistic benefits (Sherman, 1977; 1980).
Instead of, or in addition to, communicating to the predator,
a caller may warn conspecifics about danger. If relatives flee to
safety in response to a call, the caller gains inclusive fitness
through their survival. If alarm calling evolved via nepotism,
we would expect to see social species (particularly those living
near kin) more likely to call than are nonsocial species.
Rodents provide an excellent model system in which to

study the evolution of alarm calling because they vary in the
degrees to which they are vocal, diurnal, and social. We
summarized these data for 209 species of rodents from 24
different families, and used both nonphylogentic and
phylogenetic tests to investigate the associations between the
evolution of diurnality, living socially, and alarm calling.
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METHODS

Developing the comparative data set

To sample all rodents, including those that are known to
alarm call and those that are not, species account numbers
one through 702 in Mammalian Species (references are
available in Appendix and Neotropical Rainforest Mammals
(Emmons, 1997) were examined. We defined alarm calling
as noises, usually loud, emitted when a predator was detected.
For most of the 209 species included in our final analyses, our
references specified that animals emitted alarm calls in the
presence of predators. When we had good descriptions of the
sounds a particular species made in a variety of contexts and
there was no mention of alarm calls, or the sources specifically
stated that the species was not known to alarm call, we
classified it as not alarm calling. When we had little or
ambiguous data regarding the sounds a species made, we
considered it unknown and removed it from the data set.
‘‘Fear screams’’ or other defensive noises (e.g., tooth
chattering) were not considered alarm calling. Species for
which we were unsure of the context or those species
described as making noises when held by a human were not
categorized as alarm calling. Data about activity patterns,
sociality, vocalizations, and the context in which vocalizations
were emitted were summarized. A variety of guides and
reviews (references are available as in the Appendix) de-
scribed additional species of rodents that emit alarm calls, as
well as data to fill in gaps about activity patterns, sociality, and
vocalizations. Experts were consulted (see Acknowledgments)
to provide additional data on several species.

We conducted two complementary analyses. First, for our
data set of 209 species, those reported to be active at least 50%
of the day were scored as diurnal; those active mostly at night,
as nocturnal. Second, we modified our definition of diurnal-
ity. In our strict definition, we classified a species as diurnal if
it was never reported to be active at night. This reduced our
sample size to 156 species. Species likely to be found near kin,
because either they lived in family groups or they lived in
colonies or foraged in aggregations were scored as social.
Animals reported only to be found solitarily or in pairs, or
those reported to be territorial and noncolonial, were scored
as not social. By defining sociality this way, we classify as social
species such as solitary, but colonial, ground squirrels
(Spermophilus spp.) that have been the subject of many studies
of the adaptive significance of calling, and we classify as
nonsocial species such as muskrats (Ondatra zibethicus) and
North and South American porcupines (Erithizon dorsatum
and Coendou spp.) that inevitably include species with some
degree of maternal care.

Nepotistic benefits from calling could have evolved or be
maintained by the benefits from warning vulnerable offspring
during a period of parental care (Dawkins, 1979; Hamilton,
1964a,b). However, in some squirrels (Swaisgood et al., 1999),
mothers direct antipredator behavior and vocalizations
specifically toward predators during the time when they care
for vulnerable and unresponsive offspring. Species reported
to alarm call in the presence of a predator or other
disturbances were scored as alarm calling, whereas species
were scored as not alarm calling if there were vocalization
data, but alarm calling was not reported.

Developing the phylogeny

By using the phylogeny outlined in McKenna and Bell (1997),
which updates that of Simpson (1945), we classified to genus
the 209 species for which we had complete and unambiguous
data. This resolved themajority of genera that were represented
by only one or two species. Those genera with more than two

species remained as unresolved polytomies; many were sub-
sequently resolved by using species-level phylogenetic hypoth-
eses proposed in various studies. Typically, only a single
additional phylogeny was sufficient to resolve the species within
a genus. The following criteria were applied, in this order, to
resolve any genus-level polytomies: (1) molecular hypotheses
were used over morphological hypotheses; (2) more recent
hypotheses were used over less recent hypotheses; and (3) all
else being equal, hypotheses constructed by using parsimony
methods were given priority, with consensus between equally
parsimonious trees being the most desired. We also explored
the effect that two recent molecular phylogenies of holarctic
ground squirrels (Harrison et al., 2003;Herron et al., 2004) had
on our main results by modifying our tree where appropriate
and rerunning all analyses.

Details on phylogeny development

1. Sciurus: Twomolecularhypotheses (Oshida andMasuda,
2000), using parsimony and likelihood methods. Both
hypotheses follow the same structure, but the likelihood
method further resolves a polytomy of four species.

2. Marmota: Two molecular hypotheses using parsimony
(Kruckenhauser et al., 1999) and then likelihood
methods (which further resolves a polytomy of three
of the species; Steppan et al., 1999).

3. Spermophilus: Molecular hypothesis using parsimony
methods (Kruckenhauser et al., 1999) and a compiled
hypothesis (Blumstein and Armitage, 1998).

4. Cynomys: Compiled hypothesis (Blumstein and Armit-
age, 1998).

5. Tamias: Molecular hypothesis using strict consensus
methods (Piaggio and Spicer, 2001).

6. Neotoma: Two molecular hypotheses using strict con-
sensus methods (Hayes and Harrison, 1992) and parsi-
mony methods (Shipley et al., 1990).

7. Peromyscus: Molecular hypothesis using parsimony
methods (Hogan et al., 1997).

8. Reithrodontomys: Two molecular hypotheses using parsi-
mony methods (Bell et al., 2001) and a phenogram
(Nelson et al., 1984).

9. Microtus: Two molecular hypotheses using consensus
and likelihood methods (Conroy and Cook, 2000).
Both hypotheses follow the same structure, but the
likelihood methods further resolve a large polytomy.

10. Gerbillurus: Molecular hypothesis using parsimony
methods (Qumsiyeh et al., 1991).

11. Rattus: Molecular hypothesis using UPGMA methods
(Baverstock et al., 1986).

12. Notomys: Morphological hypothesis using parsimony
methods (Watts et al., 1992).

13. Geomys: Two molecular hypotheses using consensus and
neighbor-joining methods (Jolley et al., 2000). Both
hypotheses follow the same structure, but the joining-
joining methods further resolve a large polytomy.

14. Pappogeomys: Redrawn morphological hypothesis
(DeWalt et al., 1993; Russell, 1968).

15. Perognathus: Molecular hypothesis using parsimony
methods (Riddle, 1995).

16. Chaetodipus: Molecular hypothesis using likelihood
methods (Riddle et al., 2000).

17. Dipodomys: Morphological phenogram. For the resolu-
tion of most of the species within Dipodomys spp., we
chose to use a morphologically based hypothesis
(Carrasco, 2000) over a molecularly based hypothesis
(Mantooth et al., 2000) from the same year because the
morphological tree was more complete and included
many more species from this genus. Nonetheless, both
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sources agreed on the placement of all but one of the
species of Dipodomys.

18. Ctenomys: Molecular hypothesis using parsimony meth-
ods (Slamovits et al., 2001).

19. Proechimys: Molecular and morphological hypothesis
grouping two species separate from the others (Gard-
ner and Emmons, 1984).

Testing the comparative hypotheses

Fisher’s Exact tests and logistic regression analyses were used
to determine if the presence or absence of alarm calling was
influenced by activity pattern or sociality. P values , .05 were
considered significant, and p values from .05–.10 were
marginally significant. Because such a species-based analysis
cannot identify the directionality of trait evolution, and such
an analysis is potentially confounded because it does not
account for phylogenetic nonindependence between closely
related species (Harvey and Pagel, 1991), two phylogenetically
based analyses (run with our phylogeny and a one modified
based on data reported in Herron et al., 2004) were also used
to study the evolution of alarm calling in rodents.
The concentrated changes test (Maddison, 1990) was used to

determine the likelihood that the evolution of alarm calling
was concentrated on portions of the phylogenetic tree in which
diurnal species or in species likely to be found near kin were
present. The test requires a fully resolved phylogeny, hence the
random resolve option in MacClade version 4.03 (Maddison
and Maddison, 2001) was used to resolve any remaining
polytomies. The three dichotomous traits were optimized onto

the resolved tree to reconstruct the ancestor states for each. In
some instances, strict parsimony was not able to fully resolve
the reconstructions. Thus, ACCTRAN and DELTRAN algo-
rithms were applied to each character tree, resulting in a total
of six ancestor state reconstructions. The ACCTRAN algorithm
accelerates changes in traits toward the root of the tree,
maximizing early gains and forcing early subsequent reversals.
The DELTRAN algorithm, on the other hand, delays changes
in traits away from the root, thus maximizing parallel changes
(Maddison and Maddison, 2001).
The large number of species prevented the use of the

concentrated changes test for calculating the exact probability
of trait distributions. Instead, the ‘‘actual changes’’ simulation
option was used for 10,000 replicates to estimate p values for
each reconstruction. Also, to account for incorrect resolutions
of the ancestor state, simulations were run with the ‘‘either
ancestral’’ option selected. To minimize the possibility of
falsely interpreting results as significant, a conservative
approach was maintained in two ways. First, a Bonferroni
correction was applied to the critical p value for hypotheses
tested by using both ACCTRAN and DELTRAN reconstruc-
tions (new p critical .05/2 ¼ .025). Second, fewer and as many
gains in the distinguished character, as well as fewer than, as
many, or more losses in the distinguished character than

Table 2

Results of four logistic regression analyses conducted on species
values

Dependent variable

Independent variable(s)

Diurnal p Social p R2

‘‘Liberal’’ definition of diurnality

Alarm call ,.0001 — .247
Alarm call — ,.0001 .082
Alarm call ,.0001 .0031 .280
Social ,.0001 — .059

‘‘Strict’’ definition of diurnality

Alarm call ,.0001 — .436
Alarm call — .0002 .074
Alarm call ,.0001 .149 .447
Social .0001 — .069

Table 1

Associations between diurnality and alarm calling, sociality and
alarm calling, and diurnality and sociality

Alarm call

Social

Alarm call Social

Diurnal No Yes No Yes Diurnal No Yes

‘‘Liberal’’ definition of diurnality*

No 55 25 No 46 40 No 47 33
Yes 18 111 Yes 27 96 Yes 39 90

‘‘Strict’’ definition of diurnality�

No 37 15 No 27 36 No 32 20

Yes 5 99 Yes 15 78 Yes 31 73

* All p-values , 0.0001; � all p-values , 0.0004.

Table 3

Results of contingent states test

‘‘Liberal’’ definition of diurnality

Independent
variable state

Dependent variable state

ACCTRAN DELTRAN

Alarm call Alarm call

0-.0 0-.1 p 0-.0 0-.1 p

Diurnal No 107 8 .0247 117 9 .0018
Yes 28 8 30 11

Social No 87 6 .0549 91 7 .0290
Yes 48 10 56 13

Social Social

0-.0 0-.1 p 0-.0 0-.1 p

Diurnal No 88 11 .8202 90 10 .6321
Yes 73 11 65 10

‘‘Strict’’ definition of diurnality

Independent
variable state

Dependent variable state

ACCTRAN DELTRAN

Alarm call Alarm call

0-.0 0-.1 p 0-.0 0-.1 p

Diurnal No 185 3 ,.0001 179 2 .0014
Yes 36 8 30 5

Social No 77 6 .207 79 5 .112
Yes 144 5 130 2

Social (strict parsimony)

0-.0 0-.1 p

Diurnal No 57 10 .1420
Yes 50 3

p values significant after a Bonferroni correction are in bold. All
tests were two-tailed.
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actually counted in our analyses, were used when calculating
the p value in MacClade.

Although the concentrated changes test allowed compar-
isons between the distributions of two traits on a phylogenetic
tree (Swofford and Maddison, 1987), the contingent states
test (Sillén-Tullberg, 1993) allowed the use of the phyloge-
netic reconstruction of characters to ask whether the

transition in one character from zero to one or from one to
zero, or the lack of a transition, is equally likely to occur under
either state of another character. Thus, it indicated the
likelihood that the evolutionary origin of a given trait pre-
ceded the evolution of another trait. The main assumption in-
volved is that each branch has an equal probability of state
transition. To understand the directionality of the evolution

Figure 1
ACCTRAN reconstruction of the evolution of vocal alarm communication in 209 rodent species (ACCTRAN resolution; black squares and bars
indicate alarm calling present, white squares and bars indicate alarm calling absent). Reconstructions (ACCTRAN) of the evolutionary origins of
diurnality (light bars) and sociality (dark bars) are overlaid on the alarm calling phylogeny that is formally evaluated using the contingent states
tests (results reported in Table 3).
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of the three traits, a series of pair-wise contingent states tests
using CoSta version 1.03 (Lindenfors, 1999) were performed
for each reconstruction. p values less than the Bonferroni-
corrected .025 were interpreted as significant, and p , .05 as
marginally significant.

RESULTS

Using Fisher’s Exact tests, we found significant associations
between diurnality and alarm calling, living socially and alarm
calling, and diurnality and sociality (Table 1). Diurnality,
however, accounted for three to six times as much variation in
whether or not a species alarm called than did sociality (Table
2). Logistic regression analyses also allowed us to study the
independent influence of diurnality and demonstrated that
both diurnality and socialitymay explain significant variation in
whether or not a species alarm called. However, being diurnal
was relatively more important in explaining the extant pattern
of alarmcalling in rodents (Table 2), afinding that becameeven
stronger when we used a more strict definition of diurnal.
In both data sets (i.e., the 209 species versus 156 species data

sets), using the concentrated changes test, we found that both
ACCTRAN (p , .001) and DELTRAN (p , .0001) reconstruc-
tions revealed significantly more species evolving alarm calling
on branches of the tree exhibiting diurnality than would be
expected by chance. Alarm calling was also significantly more
likely to have evolved on branches of the tree exhibiting
sociality (ACCTRAN, p , .0001; DELTRAN, p , .0001). In
addition, a significantly greater number of social species was
concentrated on branches of the tree characterized by diurnal-
ity (ACCTRAN, p, .0001; DELTRAN, p , .0001).
The contingent states test allowed us to identify the

directionality of this pattern (Table 3). In both ACCTRAN
(Figure 1) and DELTRAN reconstructions, diurnality pre-
ceded the evolution of alarm calling. When we used
ACCTRAN reconstructions, sociality did not precede the
evolution of alarm calling. In contrast, DELTRAN reconstruc-
tions revealed a tendency for sociality to precede the
evolution of alarm calling. For both ACCTRAN and DEL-
TRAN reconstructions of character states, species that were
diurnal were not more likely to evolve sociality.

DISCUSSION

The results of our analyses are consistent with the hypothesis
that the evolution of diurnality preceded the evolution of
alarm calling in rodents. Overall, sociality also appeared to be
associated with the evolution of alarm calling; however, the
results of the contingent states tests suggested that species
that had evolved sociality were, at most, only marginally more
likely to evolve alarm calling.
Although both diurnal and nocturnal animals have sensory

capabilities that function well during their respective periods of
activity, vision is a key modality to accurately assess and
dynamically track predation risk (Lima, 1988a,b). Because
these tests all indicated that the evolution of diurnality
preceded the evolution of alarm calling, and because prior
evidence that prey alarm call only when there is sufficient light
to detect and track predators (Blumstein and Armitage, 1997;
Wolff, 1980), we suggest that alarm calling may have evolved as
a means of communicating to predators. If information about
a caller’s fitness and state of alertness is transmitted to
a potential predator through alarm calling, the caller is likely
to discourage pursuit and increase the chance of the its survival
(Blumstein, 1999; Cresswell, 1994; Fitzgibbon and Fanshawe,
1988; Hasson, 1991). Such detection signaling may be the
original function of alarm communication in rodents.

In certain species, alarm callingmay also have independently
evolved to communicate to conspecifics to warn them of
danger. In these cases, the inherent risk of alarm callingmay be
offset by the potential for nepotistic fitness benefits (Dunford,
1977; Sherman, 1977). Our results cannot exclude the
hypothesis that the evolution of calling to warn vulnerable
offspring (see Blumstein et al., 1997) was possible only once
the safety associated with diurnality evolved. However, if the
primary function of calling was to warn vulnerable offspring,
we would expect that virtually all diurnal species should alarm
call because all have vulnerable offspring at some point of their
lives. That they do not suggests, to us, that something else
might be important. In addition, paternal care in mammals is
not widespread, but males of many species alarm call. Available
data do not permit a detailed analysis of sex differences in
alarm calling, but the observation that males of nonsocial
species call (Burke da Silva et al., 1994) may provide additional
evidence against the necessity of a nepotistic origin of calling.
Within this phylogenetic hypothesis, we see certain species

that have evolved diurnality, alarm calling, and sociality but
subsequently reverted back to a nocturnal lifestyle while
retaining alarm calling. Although the initial evolution of
alarm calling in these species may have required the evolution
of a diurnal activity pattern, alarm calling may subsequently be
maintained by the current adaptive utility of social, nepotistic
benefits.
The nonphylogenetic analyses and the phylogenetically

based concentrated changes test both indicate an association
between sociality and diurnality, but they do not specifically test
for directionality. The contingent states test, however, reveals
that diurnality did not directly lead to the evolution of sociality.
This finding eliminates a potential indirect pathway for the
evolution of alarm calling; species that evolved diurnality were
not more likely to evolve sociality and then, subsequently,
evolve alarm calling. Instead, the evolution of diurnality
appears to be predominantly and independently responsible
for evolution of alarm calling in rodents. Thus, although there
are two conceivable pathways to the evolution of alarm calling,
surprisingly, given the importance of its adaptive utility,
sociality may be of secondary importance in rodents.
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