
It begins to be difficult, and even in some cases 
impossible, to say where ethology stops and 
neurophysiology begins. Tinbergen, 1963

Ethology, the scientific study of animal 
behaviour under natural conditions, and 
its offspring, behavioural ecology, which 
studies how behaviour may vary adaptively 
in response to environmental variation, 
have provided valuable insights into animal 
decision-making in the natural world. 
The paradigms used by ethologists and 
behavioural ecologists examine decisions 
relating to the exploitation of resources and 
optimal foraging, the ways that predators 
can be avoided and deterred, the reduction 
of competition and the maximization of 
reproductive success1. Such decisions are 
often complex because individuals need to 
balance energy costs with other survival 
needs; a central lesson from behavioural 
ecology is that trade-offs are ubiquitous. In 
addition, the computations that characterize 
these decisions are described in formal 
mathematical accounts — such as optimal 
escape theory2, foraging theories3 including 
the marginal value theorem (MVT)4, 
ideal free distribution (IFD) theory5 and 
state-dependent valuation6 — using methods 
such as stochastic dynamic programming7. 

neurophysiological, optogenetic and 
neuroimaging paradigms are regularly 
integrated in decision neuroscience.

Central features of most work in 
decision neuroscience are carefully 
controlled and structured environments 
that rigorously specify the costs and 
benefits of behaviours — that is, what 
needs to be optimized and under what 
constraints. This has led to many functional 
MRI (fMRI) studies making use of only 
a relatively modest collection of tasks 
that reflect aspects of the structural and 
functional implementation of choice. 
However, whether these tasks are 
ethologically credible and comprehensive 
is not always clear. These two questions 
are of particular importance given the 
influential observation in decision theory 
that completely optimal behaviour is 
uncommon because of its computational 
and mnestic complexity, implying that 
approximations must be ubiquitous. Such 
approximations are presumably tailored 
to work well in common and relevant 
environments at the expense of rare ones; 
thus, it is vital to consider problems that 
are ethologically well founded and thus 
functionally relevant.

In this Opinion article, we lay out 
a blueprint for a closer integration of 
ethological and behavioural ecological 
approaches with work on the neural 
basis of decision-making. The objective 
is to build biological realism into 
decision neuroscience with a focus on 
translating the extensive work that has 
been conducted on non-human animals 
to the study of humans. We concentrate 
on foraging, which is an early harbinger 
of this approach13–17. We consider three 
constraints on foraging that are of interest 
for human decision neuroscience: first, 
energy-based decisions in which metabolic 
needs, including energy consumption 
and fuelling, need to be balanced; 
second, competitive foraging; and, third, 
foraging under the risk of predation, 
when the requirement is to be strategic 
about averting threats and facilitating 
the possibility of escape. Along with 
these examples, we discuss formal tools 
developed by behavioural ecologists to 
examine various decisions that are made by 
animals. Taken together, these constraints 

These theories fall into the global 
frameworks of Huxley, Mayr and Tinbergen 
(Box 1), which seek to answer wider 
questions of the proximate (for example, 
physiological) and ultimate (for example, 
adaptive or Darwinian fitness-increasing) 
repercussions of an animal’s decisions.

By contrast, decision neuroscience has 
built accounts of the proximate causes of 
behaviour that tie optimizing theories such 
as dynamic programming and Bayesian 
decision theory to their psychological and 
neurobiological substrates. Such optimizing 
theories are shared with ethology and 
behavioural ecology, along with other 
fields such as economics, operations 
research and control theory. However, the 
bulk of the work in decision neuroscience 
focuses on building and understanding 
process models, such as models of 
inference (for example, diffusion-to-
bound decision-making8, realized in 
neural substrates such as the parietal and 
prefrontal cortex9) and learning models 
(for example, rules based on prediction 
error, such as the Rescorla–Wagner rule10, 
or temporal-difference learning11, which 
is realized in substrates such as the phasic 
activity of dopamine neurons12). Data from 
a wealth of anatomical, pharmacological, 
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Abstract | Modern decision neuroscience offers a powerful and broad account of 
human behaviour using computational techniques that link psychological and 
neuroscientific approaches to the ways that individuals can generate near-optimal 
choices in complex controlled environments. However, until recently , relatively 
little attention has been paid to the extent to which the structure of experimental 
environments relates to natural scenarios, and the survival problems that individuals 
have evolved to solve. This situation not only risks leaving decision-theoretic 
accounts ungrounded but also makes various aspects of the solutions, such as 
hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we 
suggest importing concepts, paradigms and approaches from the fields of ethology 
and behavioural ecology , which concentrate on the contextual and functional 
correlates of decisions made about foraging and escape and address these lacunae.
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and tools provide new insights and help 
integrate human decision-making into 
the guiding frameworks (Box 1). Indeed, 
we note that this form of integration is 
already becoming popular in comparative 
neuroscience13,18,19.

Decision neuroscience
Human decision neuroscience has drawn 
upon a set of experimental decision 
paradigms from the fields of economics 
and psychology. These approaches have 
been highly successful because they 
carefully control the variables of interest 
and constrain computational models that 
fit the data. One stalwart of human decision 

neuroscience is the bandit modelling 
approach, which involves binary (or 
multiple) choice static or restless ‘bandits’ 
that deliver rewards and punishments. This 
approach is used to measure value-based 
and explore-or-exploit decision processes20. 
Other paradigms have been used to measure 
other aspects of the decision processes, 
including working memory (for example, 
the AX-continuous performance task21), 
sequential information integration and 
diffusion-to-bound decision-making (for 
example, motion discrimination using 
random dot kinematograms9), retrospective 
and prospective planning (for example, the 
two-step task22), social decision-making (for 

example, trust games23) and intertemporal 
choice24,25. This relatively limited in number 
set of paradigms, together with their 
offshoots, has provided us with our current 
set of potentially oversimplified tests of how 
the brain computes decisions. Crucially, 
most realizations of the aforementioned 
paradigms leave substantial gaps in our 
understanding of the ways that decisions 
are made in the real world, or indeed of 
solutions to “The problems that the brain 
evolved to solve” (ref.26).

More broadly, ecologically important, 
fitness-determining decisions relate to 
core problems that all animals face. These 
decisions include rules underlying fighting, 
foraging, fleeing and reproduction. Such 
rules are under strong selection pressures 
and probably underpin all decision 
processes26. Although it is widely understood 
that the brain contains a set of heuristic 
mechanisms that evolved to make fast and 
accurate decisions with as little effort as 
possible, there has been less work in decision 
neuroscience paying due heed to the 
selection pressures or the bounds on their 
use (when one task paradigm transitions to 
another). Ethologically inspired theorists 
have begun to consider the evolutionary 
roots of human decision-making to 
explain how we systematically deviate from 
rational-choice models27 and the extent to 
which these biases are uniquely human. 
However, such ethological thinking remains 
rather rare in human decision neuroscience, 
which, in most cases, has yet to embrace 
fully the synthesis that ethological and 
behavioural ecological approaches offer 
between theory, mathematical modelling 
and natural observation.

Some contemporary researchers have 
started to exploit ethological insights 
when designing and interpreting more 
conventional decision-making problems. 
For instance, binary decision tasks 
are being adapted to address foraging 
concerns such as the average value of 
the environment or the cost of changing 
choices14–17. Equally, impulsivity, in the 
form of a preference for smaller rewards 
sooner rather than larger ones later, can 
be studied in the light of changing natural 
environments or threats27. In particular, 
because it may be computationally difficult 
to make the right decisions, adopting an 
ethological perspective will tell us the types 
of environment to which the necessary 
heuristics will have been tailored28. Here, 
we argue that a more comprehensive 
synthesis of the two traditions, marrying the 
approaches used by decision neuroscientists 
(but see ref.29) with the naturalistic 

Box 1 | The overlapping frameworks of Huxley, Tinbergen, Mayr and Marr

it has long been recognized that there are two fundamentally different classes of questions that 
biologists can ask: why a behaviour or neural structure takes the form it does and how this comes to 
happen, with subtle and complex nuances within each class. Many different authors in cognitive 
science18,108 and ethology107,110,111 have proposed versions of these questions. One of the first to offer 
guidelines for biobehavioural questioning was Julian Huxley, who proposed that one should attempt 
to address three issues. First, what are the behavioural and neurobiological mechanisms that 
facilitate ecological decision-making (the mechanistic-physiological question)? second, what is the 
functional or survival value of such decisions (the adaptive-function question)? Last, what is the 
evolutionary course of the physiology or behaviour that, for example, supports decision-making 
processes (the historic (palaeontological) question)? these three questions were extended and 
further refined by tinbergen107, who proposed that biologists should also answer questions of the 
ontogeny of the behaviour and biology (how does decision-making change over an individual’s 
lifespan?). Mayr combined these four questions to form two core questions. First, what are the 
proximate causes of the behaviour (short-term factors such as physiological mechanisms or 
development during a lifetime)? second, what are the ultimate causes of the behaviour 
(long-term functional trade-offs in terms of natural selection or how phylogeny has developed as a 
series of small changes over ‘evolutionary time’)110?

Perhaps the most influential framework in decision neuroscience is that of Marr, which focuses 
particularly on information processing and the different levels at which such processing can be 
viewed. His computational level of investigation has a rough parallel with the adaptive-function 
question — except with a focus on the information processing aspects of the task and the logic of 
the (computational) strategy used to solve a problem. Marr then split the mechanistic-physiological 
question into two separate algorithmic and implementational levels of investigation that aim to 
answer questions concerning how problems are solved. there are, in principle, many algorithms that 
can realize a particular computation and many implementations in computational (biophysical) 
hardware that can run any particular algorithm. Biologists are typically aiming to understand the 
particular implementation at hand and therefore lack such freedom. there are various Marrian 
approaches to aspects of ontogeny112, although this framework does not appear to have been used 
to characterize evolutionary change (see ref.18 for a detailed discussion of the relationship between 
the theories of Huxley, tinbergen, Mayr and Marr). the figure shows how the questions of Huxley, 
tinbergen, Mayr and Marr map onto each other. aHypothesized levels of Marr’s theory as they apply 
to tinbergen’s theory.

Mechanism (causation)
What are the behavioural and neurobiological
mechanisms that facilitate decision-making?

Ontogeny (development)
How does decision-making change over 
development?

Mayr’s proximate 
question

Mayr’s proximate 
question

How Marr’s levels of 
analysis alter over 
developmenta

Marr’s algorithmic and 
implementation levels of
analysis

Function (adaptation)
Why does the animal make the decisions 
it makes?

Mayr’s ultimate
question

Marr’s computational
level of analysis

Phylogeny (evolution)
How does decision-making change over
the evolutionary course of the species?

Mayr’s ultimate
question

How Marr’s levels of 
analysis alter over 
evolutiona
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importance of ethology and behavioural 
ecology, is an important but, as yet, 
incompletely realized goal. We also offer 
some prospects for the future.

Foraging
Behavioural ecologists and ethologists have 
used value-based decision-making to study 
foraging decisions and the management of 
food resources (and of other contributors 
to homeostatic well-being), raising at least 
two sets of unanswered questions in human 
decision neuroscience. One of these sets 
concerns the external environment: the 
spatiotemporal arrangement of different 
sorts of resources; the explorative, energetic 
and other costs required to find and 
extract them; and the risk of predation 
while doing so. There have been numerous 
studies focusing on how variation in 
the foraging environment and temporal 
variation in predation risk influence 
decisions30,31. The second set of questions 
concerns the subjects themselves — notably 
state dependence, which arises from the 
frequent propinquity of catastrophic 
boundaries whereby animals run out of 
reserves and starve to death32. This scenario 
creates an inevitable trade-off between 
dying from lack of resources and death 
from predation6,30,31,33.

Behavioural neuroscientists such as 
LeDoux34 have also proposed that energy 
management exerts a critical influence over 
survival-based decision-making. Indeed, 
adaptive behaviour system theory outlines 
how foraging may be triggered by neural 
systems that monitor energy reserves (for 
example, fat)35. This theory is proposed to 
result in animals attempting to maximize 
net energy intake rate (a proposal we qualify 
later) by measuring various key quantities: 
the average success in acquiring prey, the 
cost of time travel between foraging patches 
and the time since the last capture of the 
prey. A related model characterizing the 
optimal diet also includes consideration of 
the energy or caloric value of the prey, the 
time that is required to prepare and consume 
it and its ease of discovery3.

Net rate maximization. If we temporarily 
ignore predation risk and state dependence, 
then the obvious approach to understanding 
foraging is provided by the principle of 
rate maximization, which optimizes the 
difference between the benefits and the 
costs per unit time. In this context, the 
elements influencing decisions include 
energy, various forms of opportunity 
costs and time. Rate maximization has 
ramifications for what food type to choose 

(and how to handle it) and the choice of a 
foraging location. Given a choice between 
different food types, an individual should 
choose the one with the most energy  
(if everything else is equal; for example,  
see ref.36) and, when the energy content 
of the food options is equal, they should 
choose the option that requires the least 
energy to acquire it, taking time into 
appropriate account. For example, classic 
work with starlings has shown that they 
attempt to maximize the rate of net 
energy gain for themselves as well as their 
(energetically expensive) begging offspring 
when hunting for leatherjackets37; it is 
also known that gulls and crows modify 
the heights at which they drop crabs and 
walnuts, respectively, to minimize energetic 
costs and avoid kleptoparasitism38.

In decision neuroscience, there are a 
wealth of experiments manipulating the 
amount of work that subjects have to do 
to get outcomes, showing, for instance, a 
complex and crucial role for dopamine in 
overcoming subjective effort costs39. It has 
been suggested that the dorsal anterior 
cingulate cortex (dACC) is involved in the 
cost–benefit analysis of control-demanding 
situations and that it is engaged in energizing 
behaviour40. This proposed function would 
account for the dACC’s entanglement 
in decisions associated with energy 
consumption. Indeed, human imaging work 
has begun to examine the role of physical41 
and cognitive42 effort in decision-making 
processes. Several groups have shown that 
anticipation of high-effort investment is 
associated with activity in the dACC43,44. 
Supporting these claims, comparative 
research has shown that when the dACC 
region is damaged, it impairs effort-based 
decisions45,46. In the healthy human brain, 
such impairments in decision-making 
are often mitigated by a set of systems 
that increase vigour when the payoff is 
high41, yet persistent effort can result in 
decision impairments47.

Together, these ethologically inspired 
studies are consistent with human lesion 
studies showing that damage to the dACC 
can result in impairments in motivation, 
whereas electrical stimulation of this region 
elicits perseverance and vigour48. Foraging 
tasks show that anticipation and exertion of 
effort are key components of representation, 
valuation and action selection. These 
components will allow us to probe the 
dACC and its functional role further; this 
can be done by testing for the effects of 
how depleting resources, time and effort 
influence engagement of this region. A 
different sort of potential cost comes from 

the possibility of predation. We discuss 
aspects of this later in the article.

The marginal value theorem. Another 
important issue for rate maximization 
concerns a property of many environments 
— that is, resources deplete over time as 
they are exploited. The MVT identifies an 
optimal foraging strategy in this context4,49. 
Consider a notional apple-picking task 
(fig. 1). When an agent reaches a new apple 
tree, the number of apples that can be 
acquired every minute is high; however, 
over time, this depletes as the easy-to-pick, 
low-hanging fruits become scarce. The agent 
must repeatedly choose between two options: 
remaining at the same tree and trying to 
obtain more apples or spending time (and/or 
energy) travelling to another tree with its 
own low-hanging fruits. The MVT calculates 
the policy that maximizes the rate of energy 
intake using these two options and includes 
an opportunity cost for the passage of time 
to help make the comparison. The MVT 
is an important theory because it extends 
classic cost–benefit behavioural economic 
tools and makes testable predictions about 
the effect on this choice of the time needed to 
transit between patches and the dynamics of 
resource depletion.

Of course, it is possible to mimic 
MVT-relevant conditions in controlled 
studies on humans (for examples, see 
refs50,51). For instance, in one study, 
the authors designed a version of the 
apple-picking task mentioned above and 
administered it to humans16. They analysed 
leaving decisions by comparing the classic 
MVT with temporal-difference learning 
models, which focus on the learning of values 
for different options. The authors performed 
two ‘apple-tree-picking’ experiments 
in which they varied opportunity cost 
across blocks, thereby making the subject 
adjust their behaviour to the changing 
profitabilities in their environment (fig. 1). 
By comparing the predictions made by 
MVT and temporal-difference learning, 
they found that the MVT was a better model 
when subjects adjusted their decisions on 
the basis of environmental profitability. 
This study16 and another investigation15 
were among the first to compare models 
used in decision neuroscience directly with 
those used in ethology and behavioural 
ecology, and they show how these models 
may be fruitfully adopted for use in human 
decision-making studies.

Given the popularity of MVT in 
ethology, it is perhaps surprising that it has 
very rarely been used in neurophysiological 
experiments. One important exception 
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is a study of the neural basis of MVT in 
non-human primates (Macaca mulatta)13. 
In this investigation, monkeys were 
presented with two options, with one 
being a stay option in which individuals 
were given juice at a specific patch. With 
time, the amount of juice would reduce, 
thereby leading to less and less reward. The 
other option was to leave, which provided 
no reward and a delay. However, once an 
individual switched, the juice would be 
replenished. Therefore, monkeys had to 
balance the trade-off of the immediate 
reward against the long-term benefits of 
switching to a new patch.

The results showed that monkeys 
made near-optimal decisions in all 
experimental conditions, leading the 
authors to conclude that the context of 
foraging reduces biases in time preferences, 
a finding that is inconsistent with classic 
intertemporal choice findings13. While 
individuals performed the task, the authors 
also recorded neuronal activity in the 
dACC. The dACC was chosen because, 
as discussed above, it is a region that is 
thought to integrate reward and cost signals 
with action selection. The results showed 
that as the patch gradually depleted in 
juice, neurons in the dACC would increase 
their firing rates to the point where, at a 
specific threshold, monkeys would switch 
patches. The dACC neuronal signals 
rose more slowly when the travel time 
increased, suggesting that multiple control 

signals work in harmony to regulate patch 
leaving. This finding supports a large 
body of work from the field of behavioural 
ecology. For example, one study showed 
both experimentally and theoretically that 
myopic ‘short-term’ rules can be favoured 
over feeding because they have adaptive 
‘long-term’ consequences52.

Recent work suggests that the MVT 
foraging framework can be generalized 
to intangible resources beyond money 
and other primary-value domains that 
are central to traditional decision-making 
research. Indeed, one study used foraging 
models to examine how humans allocate 
limited attention53, and in a different study, 
the MVT framework was applied to rhesus 
macaques’ quests for social information54. 
The latter involved an environment in 
which social information (pictures of other 
monkeys) was available for up to a fixed time 
following a choice (in an abstraction of a 
‘patch’). However, having looked at a picture, 
the subjects had to wait until a waiting time 
had elapsed before making another choice 
(abstracting the travel cost between patches). 
Monkeys duly spent more time ‘foraging’ for 
social information when the travel cost was 
greater54. Equally, in a study of the recall of 
items from semantic memory by humans, 
individuals generated a whole collection 
of answers from one set of overlapping 
subcategories (the informational equivalent 
of a patch) and then moved to another set as 
recall of items in the first one ‘dried up’. The 

choice of when to switch was consistent with 
MVT-like processes55.

Exploration versus exploitation in foraging. 
The analysis in the MVT is based on a 
simplifying assumption about the regularity 
of finding a new patch (or tree). In a study 
on humans, the authors15 designed a task 
that made the trade-off between exploration 
(search) and exploitation (encounter) more 
explicit, as in an optimal diet model56. They 
used simple binary decision-making tasks 
in which participants were presented with 
two stimuli that represented the encounter 
values; above these two stimuli, there were 
six additional shapes that represented the 
‘search value’, drawn from a set of 12 objects 
that the subjects had learned about on 
a previous session. Each individual’s 
goal was to decide whether to engage 
with (and ultimately to choose between) 
the encounter options or search for an 
alternative. Searching resulted in a cost 
(or loss of money); note further that, unlike 
our previous discussion of exploration, 
searching did not result in the acquisition 
of information that could be useful over 
the long run and instead merely led to a 
potentially better alternative. The results 
showed that the dACC encoded both the 
average value of the foraging environment 
and the costs of foraging. Furthermore, the 
authors integrated their results with those 
from ref.13 and proposed that the dACC is 
also involved in searching for alternatives, 
whereas the ventromedial prefrontal 
cortex (vmPFC) is involved in well-defined 
‘economic’ values of options (but see the 
subsequent debate elewhere57,58).

State dependence. Despite the power of 
rate maximization in explaining some 
foraging choices, it does not address 
certain important factors. In particular, 
when reserves are tight and homeostatic 
challenges become critical, the variance 
of outcomes is important3. Subjects can 
become more risk-seeking in terms of patch 
choice and predation risk30. With a few 
important exceptions (for examples, see 
refs59,60), most behavioural neuroscience 
decision-making studies have taken the 
view, typically implicitly, that individuals are 
not constrained by energy or homeostatic 
challenges. Indeed, it is rare for subjects 
even to be able to run out of experimentally 
provided money. Given the ubiquity of 
energetic constraints in nature, this seems 
an unfortunate assumption when the brain 
may often process the acquisition of money 
(an exogenous resource) in a similar manner 
to the acquisition of food resources (that is, 

Time 
travel

Time spent in patch

En
er

gy
 g

ai
n 

or
fo

od
 in

ta
ke

Gains drop 
off as patch 
is depleted

Fig. 1 | example of classic apple-picking task. Subjects forage in an unlimited orchard and have to 
decide whether to continue picking from their current tree or to switch to another one to maximize 
their harvest16. Switching is associated with a time penalty ; however, if the subject decides to stay and 
pick apples from the tree, the rate of return will decrease. Thus, at some point, the subject should 
switch to a new tree. To maximize the long-term harvest rate of apples, the subject repeatedly decides 
between choosing to stay at a tree and switching to a new one.
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primary reinforcers that influence one’s 
endogenous abilities61,62). Furthermore, 
research shows that social rewards also 
modulate activity in overlapping rewards 
circuits63. Perhaps some of the debates 
about neural structures such as the dACC, 
the involvement of which in conventional 
decision-theoretic tasks is complex and 
confusing57, might be resolved by adopting 
a more naturalistic stance in which crucial 
resources are limiting.

Competitive foraging
When the best choice by (and payoff 
to) one individual is influenced by the 
actions of another, the appropriate 
modelling framework is game theory64,65. 
In nature, the context of such decisions 
may occur when making territorial 
decisions to avoid despotic (for example, 
dominant) individuals, or when studying 
parasitic behaviours as captured in the 
producer–scrounger game model66. One 
goal of game theory, particularly when 
it is applied to non-human animals, is to 
predict behaviours that, in conjunction 
with one another type of behaviour, are 
evolutionarily stable strategies (a particular 
type of Nash equilibrium67).

Ideal free distribution. One useful concept 
is captured by the theory of IFD, which 
proposes that foragers geographically 
distribute themselves in relation to the 
proportion of food available and to the 
density of competition5. The IFD assumes 
that the forager has perfect information 
about patch quality and the density of 
competition (the ideal aspect of IFD) and 
can move freely among patches without 
time delay (the free aspect of IFD). In a very 
simple form, this distribution is expressed by 
the input-matching rule in which, if habitat 
A contains more food and less competition 
than habitat B, habitat A will be the preferred 
location. Although despotic distributions 
have also been modelled (for example, 
dominance and territoriality), theorists 
have suggested that the input-matching rule 
is an evolutionarily stable strategy67, and 
pioneering work from behavioural ecology 
has shown it to be pervasive across various 
species from invertebrates to humans5,68.

One notable study relating to the IFD 
examined foraging behaviours in mallard 
ducks (Anas platyrhynchos)69 — specifically, 
how mallards distributed themselves when 
researchers dropped bread into a lake at 
fixed locations approximately 20 m apart. 
This approach mimicked a patch foraging 
task, and the researcher could keep track of 
the movement of the mallards while altering 

the amount of bread being dropped on 
either side of the lake. The study showed that 
mallards generally followed the assumptions 
of the IFD, but it also found that some 
individuals exhibited despotic behaviour 
(dominance), resulting in some mallards 
receiving unequal amounts of food. These 
findings suggest that the behaviour of these 
birds depends on two types of information: 
the supply rate in each patch and the 
competitive value of the other birds69.

In one application of the IFD in decision 
neuroscience, fMRI was used to examine the 
human brain during the sort of competitive 
foraging that underlies the IFD14. The 
authors created a foraging task in which the 
available reward and competition varied 
across two patches. The competition was 
manipulated by telling the participants 
that they were performing the task live 
online with real competitors (represented 
as red dots), allowing the experimenters to 
manipulate the number of competitors in 
each patch. The subject’s goal was to acquire 
as many tokens as possible by pressing a 
response key as soon as a token appeared, 
before any of their competitors. They could 
switch between two habitats to minimize 
competition and compete for tokens in the 
patch with the highest supply rate. At a small 
cost of time, subjects could switch patches 
as the rewards and competition increased 
or decreased in each patch. The increased 
drive to switch patches resulted in increased 
activity in several regions, including the 
dACC, the supplementary motor area and 
the insula; the authors speculated that all 
three regions might be involved in the urge 
to switch habitats. By contrast, staying put 
in an advantageous habitat was associated 
with activity in the reward-related areas — 
namely, the striatum and medial prefrontal 
cortex. Moreover, the level of amygdala 
activity steered individual preferences in 
competition avoidance (for example, high 
amygdala activity was associated with high 
levels of avoidance). This study suggests 
that input-matching decisions are made 
through the medium of a distributed set of 
neural circuits.

Foraging under predation risk
Behavioural ecologists have shown 
the importance of predation risk in 
understanding foraging decisions3,70. 
The near-ubiquitous importance of 
predation risk suggests a deficiency in 
decision-making paradigms that ignore 
it. An early example examined how risk of 
predation affected rate maximization in 
grey squirrels (Sciurus carolinensis)71. Like 
other animals, squirrels leave their safety 

refuge to reach food patches, a phenomenon 
referred to as central-place foraging72. Once 
a squirrel reaches the food patch, it must 
make a decision to eat in the patch or to 
use the energy to take the food back to the 
safety of its refuge. Going back to the refuge 
makes sense only if there is a cost to staying 
in the food patch (for example, predation 
risk). Empirical observations confirm the 
predictions of mathematical models as to 
what happens: the squirrels acquire more 
food if it is close and therefore can be taken 
back to the refuge cheaply. Similar trade-offs 
affect the portion sizes they pick. Together, 
these behaviours reduce the chance of being 
eaten by a predator.

Common currency. To understand, at a 
functional level, how decisions should  
trade off different benefits (or risks), such  
as the worth of foraging, versus avoiding  
predation risk or attempting to court a  
mate, a common currency is required73.  
By comparing the expected future repro-
ductive success of an individual (often 
referred to as ‘reproductive value’ (ref.74)) 
under different strategies, the choice that 
maximizes reproductive value can be 
identified as the normative expectation 
under natural selection. How the value 
of decisions alters with environmental 
conditions and an individual’s internal 
state has been studied extensively from a 
theoretical perspective29,75. We suggest that 
these ethologically inspired insights about 
optimal behaviour can help to ground 
expectations about conditions under which 
particular trade-off paradigms should 
come into play under the guiding principle 
that mental processes are likely to produce 
outcomes that approximate the behaviours 
that maximize the reproductive value. 
Consequently, this approach may help to 
define and understand the boundaries of 
particular experimental paradigms and to 
understand the apparent ‘boundaries’ (or 
framing effects) of different mental processes. 
As a very simple example, if an individual is 
close to starvation, then their reproductive 
value will approach zero if they do not 
soon find food. Therefore, the normative 
perspective suggests that their mental 
processes should take relatively less account 
of predation risk when their reserves are low.

Escape theory. Ydenberg and Dill76 theorized 
that when a predator approaches, prey make 
economic decisions in terms of the cost–
benefit ratio of remaining compared with 
fleeing. Studies of flight initiation distance 
in hundreds of species of birds, mammals, 
lizards and other taxa have shown that prey 
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are remarkably adept at escape, making 
decisions on the basis of prior experience 
with the predator and the predator’s 
relative position and bearing, lethality and 
velocity2,77. This well-understood natural 
paradigm offers substantial opportunities for 
decision neuroscience (fig. 2).

Flight initiation distance and the neural 
basis of escape. In humans, fMRI has 
been employed during ‘active escape’ 
paradigms in which the goal was to escape 
from a virtual predator that possessed the 
capacity to chase, capture and shock the 
participant. In this experiment, the vmPFC 
was preferentially active when the virtual 
predator was distant, but this activity 
switched to the midbrain periaqueductal 
grey (PAG) as the threat moved closer78. 
This finding was replicated79 and extended 
by showing that panic-related motor errors 
correlated with activity in the midbrain 
encompassing the PAG and the dorsal raphe 
nucleus80. Other researchers have shown that 
evading virtual predators is also associated 
with greater connectivity between the 
amygdala, the anterior cingulate cortex and 

the vmPFC81, and that the hippocampus 
is activated when individuals engage in 
threat engagement, a finding supported by 
investigations of patients with hippocampal82 
or amygdala lesions83 as well as animal and 
theoretical models79,84–87. Together, these 
findings support a network of survival 
circuits that are involved in ecologically 
defined threats.

More recently, a flight initiation 
distance task was developed to investigate 
how survival circuits facilitate escape 
decisions when subjects encounter 
fast-attacking or slow-attacking 
threats88. Fast-attacking predators were 
characterized by the virtual predator 
quickly switching from a slow-approach 
to a fast-attack velocity, thereby requiring 
the subject to make quick escape 
decisions. By contrast, slow-attacking 
predators slowly approached for longer 
time periods, resulting in larger buffer 
zones and more time to strategize escape. 
When subjects were faced with quick 
decisions to flee virtual predators with far 
attack distances, regions associated with 
reactive fear including the midbrain PAG 

and midcingulate cortex (MCC) were 
activated. Conversely, the close-attacking 
virtual predators with larger buffer zones 
elicited the activation of brain regions that 
are presumed to be involved in cognitive 
fear and strategic planning, including 
the vmPFC, hippocampus, posterior 
cingulate cortex and retrosplenial cortex. 
The authors then investigated how close 
each subject was to adopting the optimal 
escape strategy by applying a Bayesian 
decision-theory model. The model 
revealed the MCC as a candidate region 
for optimal escape from fast-attacking 
predators, consistent with the known role 
for this area in adaptive motor learning89. 
Hippocampal activity was associated with 
optimal escape from slower-attacking 
threats, supporting a role for this region 
in escape only when the subject is not 
under time pressure. This study provides 
one example of how models from the field 
of ethology and behavioural ecology can 
be applied to decision neuroscience and 
demonstrates a previously unknown link 
between defensive survival circuits and 
their role in adaptive escape decisions.
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Fig. 2 | example of foraging and escape choice, and the cost-of-fleeing 
and cost-of-staying curves. a | The solitary prey (for example, a zebra) must 
make a decision about whether to flee to safety when a predator is 
approaching (for example, a lion). The flight initiation distance (FID) is the 
measurable distance at which the prey makes the decision to flee from an 
approaching threat2. The FID is influenced by several factors, including the 
degree of threat posed by the predator (for example, whether it is a 
fast-moving or slow-moving predator) and the value of its current location 
(for example, there is an abundance of food or mates). b | The schematic 
represents the cost of fleeing versus remaining and is based on the model 

proposed by Ydenberg and Dill76. As the distance between the prey and the 
predator decreases, the cost of fleeing decreases (red line), whereas the cost 
of not fleeing increases (blue line). d* represents the optimal distance 
between the prey and the predator at which the prey should flee. c | In situ-
ations in which there are multiple benefits of remaining at a particular patch 
but a single cost of fleeing, d* is longer for the higher of the two 
cost-of-not-fleeing curves. d | Conversely , d* is longer for the lower of the 
two cost-of-fleeing curves when there is a single cost-of-not-fleeing curve2. 
d*CH, high cost; d*CL, low cost; d*NH, not fleeing, high cost; d*NL, not fleeing, 
low cost. Adapted with permission from ref.2,Cambridge University Press.
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Future directions
The development of a new decision 
neuroscience framework that is based on 
ethology and behavioural ecology provides 
a new set of paradigms that can be adapted 
to understand (human) decision-making. 
Such a framework links the guiding 
frameworks of evolutionary biology (Box 1) 
with the formal tools used by ethologists 
and behavioural ecologists (fig. 2). Moreover, 
it specifies experimental protocols and 
mathematical models that characterize 
the mechanistic and dynamic signals that 
support moment-to-moment decisions and 
highlights the role of state dependence in 
decision-making. Furthermore, it provides 
information about the environments in 
which priors and heuristics, which are 
necessary to cope with the complexity of 
natural decision-making tasks, evolved 
and developed.

Neuroscience has made considerable 
progress in identifying the function 
of particular brain regions in relation 
to particular tasks and, in some cases, 
generalization across tasks (for example, 
reward functions of the basal ganglia90). 
Arguably, the next challenge is to understand 
the effect of trade-offs across tasks — how 
a particular mechanism is adapted for use 
on multiple tasks (thus being suboptimal on 
any one) and the more immediately tractable 
question of how coordination and control 
take place among different functions and 
the brain regions that support them (for 
example, in the case of self-control91–93). 
Behavioural ecology may be particularly 
helpful in identifying relevant trade-off 
situations.

This more biologically relevant 
framework, along with evolutionary 
approaches to medicine94, also sits well 
with the Research Domain Criteria (RDoC) 
framework advocated by the US National 
Institute of Mental Health, which aims to 
integrate disparate levels of information and 
provide a more foundational understanding 
of the neural and psychological dimensions 
that underpin healthy and abnormal brain 
function95. Homologous studies in humans 
can create dynamic virtual ecologies that 
provide new dimensions to investigate 
adaptive and affective decision-making in 
healthy humans and across a broad range of 
psychiatric disorders. For example, a recent 
study showed that subjects who gambled 
more showed increased exploration on an 
explore–exploit foraging task and earned 
less money on a patchy foraging task96,97. 
Moreover, other researchers have linked 
foraging behaviour to depression98.  
Shifts in neural activity that are associated 

with changing proximity to threat allow 
researchers to examine the dynamic 
relationship between anxiety and fear 
circuits in individuals with affective 
disorders. Studies are also possible into 
how decisions associated with effort 
are impaired in mood disorders such as 
depression, in which lethargy and fatigue 
are rampant99.

Finally, the approach we advocate is 
not a one-way street: it can be reciprocally 
illuminating. Ethological thinking by 
decision neuroscientists will in turn have 
an impact on ethologists and behavioural 
ecologists. The key issues of ethology are 
often based around ‘why’ questions; as 
Stephens and Krebs point out, “Asking 
what a machine is for helps the engineer 
understand how it works” (ref.31). Conversely, 
understanding relevant brain mechanisms 
might help ethologists understand what 
specific condition the mechanisms 
evolved for and will certainly help identify 
important constraints on information 
processing. There is evidence that decision 
science is having an impact on ethology, 
including the use of classic paradigms 
from behavioural economics such as risk 
aversion, delayed discounting and framing 
effect paradigms100–102. The question of the 
calculational complexity of decision-making, 
which informs much thinking about 
process models and heuristics28,103 in 
decision neuroscience, could offer relevant 
constraints for ethological paradigms. 
Following on from Tinbergen’s work, which 
identified different classes of biological 
questions (Box 1), McNamara and Houston29 
have pushed for us to understand how 
function and mechanism have co-evolved; 
such ‘evo-mecho’ approaches are necessary 
for a comprehensive understanding of 
decision-making because it is not tenable 
to consider the evolution of just function 
or mechanism and to pretend that the 
other remained fixed. Gaining a deeper 
understanding of cognitive processes 
can help enable this integration and, 
in turn, benefit the fields of ‘cognitive 
ecology’ (ref.104) and the study of social 
behaviour105,106.

Concluding remarks
Like Mayr and Huxley, Tinbergen107 
suggested that we must take a multilevel 
approach to scientific questions in biology, 
writing, “If we do not continue to give 
thought to the problem of our overall 
aims, our field [ethology] will be in danger 
of becoming an isolated ‘ism’”. Likewise, 
Marr and Poggio opined that “Complex 
systems, like a nervous system … must 

be analysed and understood at several 
different levels” (ref.108). Although decision 
neuroscience largely abides by Marr and 
Poggio’s framework, we suggest that it is 
in some danger of isolating itself by, as 
Tinbergen put it, “Losing touch with the 
natural phenomena” (ref.107). We have 
attempted to address this problem by 
discussing three examples from the foraging 
literature that are central to studying 
decision-making in the natural environment 
and that bring together disparate fields to 
generate a multilevel approach to human 
decision-making.

A small, but growing, band of researchers 
are adopting new approaches to task design 
and analysis that are inspired by ethology 
and behavioural ecology. These approaches 
have given rise to new information 
about how the brain computes decisions 
under various conditions. A more critical 
outcome of these approaches is that they 
move the laboratory closer to nature109, 
thereby allowing better understanding 
and prediction of how we make decisions 
in the real world. Crucially, the functional 
approach of ethology (and behavioural 
ecology) identifies fitness trade-offs that 
help us to understand how one set of 
approximately optimal rules (such as rate 
maximization when foraging) can, under 
different circumstances, conflict with 
rules that are approximately optimal in 
another task (such as predator avoidance). 
By understanding such trade-offs, we 
may better understand how to design 
neuroscientific studies to identify the 
(bounds on) conditional use of particular 
neural structures. Adopting this framework 
will thus enhance our understanding 
of natural diversity and likely improve 
applications for human health and 
well-being.
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