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Abstract

Animals living around people may modify their antipredator behavior as a function of proximity to

humans, and this response has profound implications for whether or not a population can coexist

with humans. We asked whether inland blue-tailed skinks Emoia impar modified their individual

antipredator behavior as a function of differential exposure to humans. We conducted multiple

consecutive flushes and recorded 2 measures of antipredator response: flight initiation distance

(FID), the distance from a threatening stimulus at which an individual flees, and distance fled, the

distance an individual fled after a flush. We used a multiple model comparison approach to quan-

tify variation in individual escape behavior across multiple approaches and to test for differences

in between-individual variation among populations. We found that individuals tolerated closer

approach and fled shorter distances at locations with relatively less human disturbance than at

locations with medium and high human disturbance, respectively. In addition, skinks living at high

human disturbance sites had less variable FIDs than at low human disturbance sites. Two theories

may explain these results. Selection against less favorable phenotypes has reduced behavioral

variation in urban habitats and behavioral plasticity allows individuals to flexibly adjust their be-

havioral patterns in response to human disturbance. These results highlight the importance of

studying variation within populations, at the individual level, which may better elucidate the impact

that human disturbance has on the behavioral composition of populations.
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Environments are becoming increasingly urbanized, bringing wild

animals into more frequent contact with humans. Urban predators

often avoid humans by shifting to a more nocturnal schedule

(Ditchkoff et al. 2006), whereas other species such as birds, lizards,

and mammals become habituated, more tolerant of humans through

repeated exposure (Samia et al. 2015). Urbanization can additional-

ly influence individuals differently based on distinct life history fac-

tors, as seen in the combined effect of urbanization and sex on

personality across metamorphic stages in butterflies (Kaiser et al.

2018). Given that habituation occurs at the level of the individual, it

is important to focus on how individuals respond to humans and

whether there is variance in degree of tolerance to humans.

Individual differences within urban populations can influence popu-

lation dynamics, especially if animals sort themselves according to

degree of tolerance or if individuals in a population are similarly

plastic in their response to humans.

Most vertebrates exhibit some degree of individual behavioral

plasticity by adapting to stressors through behavioral changes

(Øverli et al. 2007). Individual variation in response to urbanization

can have profound impacts on fitness, especially through reduced es-

cape behavior or through phenotypic diversity from microevolution

(Sol et al. 2013; Miranda 2017). For instance, Iberian wall lizards
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Podarcis hispanica differ in their propensity to explore and be social,

with bolder phenotypes more likely to colonize urban habitats.

More exploratory lizards habituate to new environments more

quickly, including urban ones, likely due to an enhanced ability to

assess risk (Rodrı́guez-Prieto et al. 2010). Burrowing owls Athene

cunicularia vary at the individual level in their tolerance of human

disturbance and as a result, choose different places to breed based

on these preferences (Carrete and Tella 2010). Thus, individual vari-

ation can have an important effect on how populations respond to

humans in different environments or situations.

Habituation to humans is a likely consequence of increased ex-

posure to humans and is likely to influence risk assessments and

hence antipredator behavior. Habituation is defined as the reduction

of an individual’s response to a stimulus after multiple exposures to

that stimulus, whereas sensitization is an increased response to a

repeated stimulus (Rankin et al. 2009). Habituation may, in some

cases, transfer across contexts, such that an animal that habituates

to humans may also have a reduced antipredator response to actual

predators (Geffroy et al. 2015). This is seen in fox squirrels Sciurus

niger where urban individuals showed reduced antipredator

responses to coyote Canis latrans and red-tailed hawk Buteo jamai-

censis vocalizations (McCleery 2009). This carries with it obvious

negative fitness consequences. To study habituation to predatory

stimuli, a subject must be exposed to multiple nonthreatening

encounters with a potential predator, which requires repeated meas-

ures of the same individual across time (Rodriguez-Prieto et al.

2008; Bejder et al. 2009). For repeated approaches, the distance at

which the individual flees could increase, decrease, or not change,

indicating sensitization, habituation, or no effect, respectively

(Blumstein 2016).

Quantifying antipredator behavior, by studying how animals es-

cape from a potential predator, is a useful way to understand how

animals respond to anthropogenic activities (Blumstein 2006;

Geffroy et al. 2015). Flight initiation distance (FID), the distance be-

tween an individual and a threatening stimulus when the subject

flees (Ydenberg and Dill 1986), is a widely used measure to quantify

both antipredator behavior and response to humans (Ydenberg and

Dill 1986; Frid and Dill 2002; Cooper and Blumstein 2015).

Although FID can tell us a great amount about how human presence

influences behavior, many studies of FID focus on measures of cen-

tral tendency in populations (Blumstein et al. 2003; Blumstein 2006;

Martı́nez-Abraı́n et al. 2008; Rodriguez-Prieto et al. 2008) instead

of the variation in FID at the individual level (Carrete and Tella

2010; Møller and Garamszegi 2012). This follows a larger trend in

the quantification of antipredator behavior and behavioral plasti-

city, which typically are studied at a population level, where popula-

tion means (Møller 2010; Møller and Garamszegi 2012; Møller

et al. 2013; McGowan et al. 2014; Samia et al. 2015; Garamszegi

and Møller 2017) and population variances (Møller 2010; Møller

and Garamszegi 2012; Møller et al. 2013; Garamszegi and Møller

2017) are compared across sites with different levels of human dis-

turbance or along some other environmental gradient. Perhaps due

to this population-level scale of study, most studies are conducted

on unidentified individuals, and consist of only a single FID meas-

urement per individual. However, Guay et al. (2013) found that

swans differ in antipredator response by sex, suggesting that studies

on marked individuals or that study individual-level response would

provide a more nuanced view of antipredator behavior.

Urban environments also alter an individuals’ perception of risk

(Cavalli et al. 2016). Perception of risk can be continually altered,

such as the continuous evaluation of a predator’s behavior after an

individual has begun to flee (Cooper and Blumstein 2014). Distance

fled (DF) is a measure of the distance an individual flees after an ap-

proach and can be a measure of risk. In lizards, DF increases as the

lizard’s perceived risk increased (Cooper and Blumstein 2014). In

urban habitats, anole lizards Anolis sagrei have shorter escape dis-

tances than their forest-dwelling counterparts (Lapiedra et al. 2017).

Ungulates flee longer distances in response to more threatening stim-

uli and as a function of habitat openness (Stankowich 2008). Risk is

often perceived to be greater in areas with sparse cover, distant refu-

ges, fast predators, and/or when approached directly (Cooper 2010;

Cooper et al. 2015). Different measures of antipredator behavior are

differentially influenced by human activity (Price et al. 2014). By

using multiple measures, we will better be able to recognize nuances

within different escape processes, as well as the differences at the in-

dividual level.

We studied how inland blue-tailed skinks Emoia impar antipreda-

tor behavior, measured by FID and DF, varied in response to human

development. However, unlike the majority of previous studies, we

used multiple simulated predator approaches to focus on the variabil-

ity of both individual habituation and between-individual variation

within a population across a human disturbance gradient. Skinks

are an ideal species in which to ask these questions because they are

locally abundant, and prior work established that our Mo’orean

population of skinks tolerated closer approaches by humans in areas

where people were more common (McGowan et al. 2014).

Materials and Methods

Study site and procedures
We studied blue-tailed skinks in Mo’orea, French Polynesia

(17�320S, 149�500W) from 19 January to 1 February 2018 during

periods of peak skink activity (07:00 AM–04:00 PM). We observed

skinks in 3 locations studied by McGowan et al. (2014) that were

ranked for human disturbance based on domestic animal presence

(dogs, cats, and chickens) as well as human foot and vehicular traffic

in the area. Our high human disturbance site (17�29.23.30S,

149�49044.20W) was the Richard B. Gump South Pacific Research

Station and the contiguous Manutea Tahiti – Rotui Juice Factory and

Distillery, a developed area with substantial pedestrian and vehicular

traffic from researchers, residents, tourists, dogs C. lupus familiaris,

cats Felis catus, and chickens Gallus gallus domesticus. Our medium

human disturbance site (17�31.360S, 149�49.500W) was an unpaved

cross bay road connecting Cook’s Bay and Opunohu Bay and was

characterized by minimal foot traffic but frequent vehicular traffic.

Our low human disturbance site (17�52.20510S, 149�83.17430W) was

a formerly undeveloped trail which was recently (within 2 years of

our study) upgraded to service a pineapple farm (H. Teavai–Murphy,

personal communication). This site was characterized by some vehicu-

lar traffic but, during our study, had the least amount of pedestrian

traffic of the 3 sites. Despite this land use change, we believe that the

ranking of the sites in terms of relative human presence and activities

was preserved.

Three observers walked independently through these 3 locations

searching for skinks. Observers did not visit the same location with-

in a site in the same or adjacent days. This ensured that observers

did not oversample a particular site. In the South Pacific, skinks are

reported to live in very high densities (Rodda et al. 2001), whereas

we did not formally quantify densities, our impression was that they

were quite abundant at our Mo’orean study sites. Thus, it was un-

likely that when an observer returned to a general location, they

flushed the same skink. To avoid resampling the same individual
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and to avoid carryover effects from a previous flush, observers only

conducted flushes on skinks that were �10 m apart.

When a skink was spotted, observers identified it as E. impar

and ensured that it had an intact tail (not autotomized). The loss of

a tail would indicate a recent predator attack and this might have

systematically altered perceptions of risk. Once an individual was

detected and identified, an experimental approach began. Observers

were trained on a standardized protocol to collect repeated FIDs (2–

4 FIDs) on a single individual by approaching at a constant rate of

0.5 m/s (Blumstein et al. 2004). Observers carried flags to mark the

starting position of the skink, the FIDs and the observer’s initial lo-

cation (hereafter, starting distance, SD) separately. At the beginning

of the approach, a flag was dropped marking the observer’s initial

location. The observer waited 30 s after dropping the flag to allow

for the skink to settle, and approached the skink directly. When the

skink began to flee, a flag was dropped at the observers’ position to

mark the first FID. The observer then stopped, and dropped another

flag to mark their SD for the second approach and waited 30 s be-

fore beginning. Although conducting the second approach, a flag

was dropped at the initial position of the skink for the first flush.

When the skink fled a second time, another flag was dropped at the

point marking the observers’ position when the skink began to flee.

If the skink was still in sight, the observer again stopped, dropped a

flag and waited 30 s to repeat the process. Overall, this procedure

was repeated for 2–4 total trials on the same individual. After all

possible trials had been conducted on a skink, the observer meas-

ured distances between flags for all SD, FID, and DFs. SD was the

distance between the flag marking SD for a separate approach and

the flag marking the skink’s initial location for that trial. FID for a

separate trial was found by measuring the distance between the flag

marking FID and the flag marking the skink’s initial location for

that trial. DF for a separate trial was found by measuring the dis-

tance between the flag marking the skink’s initial location for that

trial and the flag marking the skink’s initial location for the follow-

ing trial. Experimental approaches were only conducted when it was

not raining and when the wind speed was �2 on the Beaufort scale.

At the start of the first flush, we also counted the number of conspe-

cifics �1 m radius of the focal subject.

Statistical analyses
All analyses were conducted in R (version 3.4.3; R Core Team

2017). We log10-transformed our FID, DF, and SD to normalize dis-

tributions. We then tested whether there was variation in FID be-

tween individual skinks. To do this, we created a null linear mixed-

effects model with a dependent variable of log10FID and the random

effect of individual. From this, we calculated the intraclass correl-

ation coefficient to quantify how much of the variation in FID was

explained by individual skinks. Then, we used a chi-square to test

whether skinks received approximately equal numbers of 1, 2, 3, or

4 flushes across the 3 sites.

To determine how individuals varied in their response to subse-

quent flushes, we fitted a series of increasingly complex linear

mixed-effects models in lme4 (Bates et al. 2015) and lmerTest

(Kuznetsova et al. 2017). All models included the following fixed

effects: site, observer, and SD, which we included to, respectively,

investigate differences between site, evaluate observer effects, and

account for the association between SDs and FID (see Table 1 for

FID models, Table 4 for DF models). Models varied by their inclu-

sion of a random intercept or a random intercept and random slope

and are specified below. By including different types of random

effects in the models we accounted for variance in behavior within

individuals across sites. This allowed us to explore the relationships

between individual behavior and site in different ways and, ultimate-

ly, to find which relationship held the greatest explanatory power.

Wefirst created a basic Ordinary Least Squares (OLS) regression

(M0) with the fixed effects mentioned above. This allowed us to

examine variation in escape behavior explained by these fixed fac-

tors. We created a second, random intercept model (M1) by adding

trial as a fixed effect to M0. Adding the fixed effect of trial allowed

us to account for individual habituation in escape behavior as well

as determine whether trial significantly explained the variation in the

data. We then created a random intercept, random slope model

(M2) by adding a random slope of trial to M1. By adding random

slope of trial, we allowed each individual to exhibit different slopes

in their antipredator responses across multiple trials. This allowed us

to determine the overall direction and degree of each individual’s re-

sponse to multiple approaches. Lastly, we created 2 additional mod-

els, (M3 and M4) by adding a site–trial interaction as a fixed effect

to both M1 and M2, respectively. M3 thus examined the between-

individual variation in escape behavior averaged across trials at each

site with varied individual intercepts but a common mean slope. M4

examined between-individual variation in escape behavior across tri-

als at each site with varied individual intercepts and slopes reflective

of each individual’s habituation response across trials.

To determine the best-fit model, we used data-driven model

comparison to identify the best supported model based on Akaike

Information Criterion (AIC) comparisons (Zuur et al. 2009). Then,

we evaluated the significance of the fixed effects in the best model

and conducted a pair-wise means test on site, if significant, in the

best model.

To test for variation of FID for individuals among sites (Bolker

2013), we fitted 2 linear mixed-effects models in nlme (Pinheiro

et al. 2017). Both models had trial, observer, SD, site, and the inter-

action between site and trial as fixed effects. Our models again dif-

fered in their inclusion of random intercept or random slope and

random intercept, examining 2 different levels of within individual

variation. Our first model included the random intercept of individ-

uals (S0), and our second model had both random intercept of indi-

viduals and the random effect of site (S1). S0 thus measured whether

there was a difference between individuals in their mean response,

whereas S1 measured whether individuals differed across sites. We

compared these 2 models using the AIC comparisons to determine

whether site explained significant variation in FID. If the model

comparison was significant, we inferred that there were differences

in individual plasticity among sites.

We visualized our results with spaghetti plots made with ggplot2

(Wickham 2009). Assumptions of our models were evaluated by

plotting residuals, testing for normality with the Shapiro–Wilks

tests, and examining Q–Q plots. We used an identical workflow to

study factors affecting variation in DF.

Results

We observed a total of 87 skinks: 39 at the human-dominated site

(16 with 4 FID trials, 16 with 3 FID trials, and 7 with 2 FID trials);

32 along the dirt road (13 with 4 FID trials, 8 with 3 FID trials, and

11 with 2 FID trials); and 16 along the more pristine trail (7 with 4

FID trials, 5 with 3 FID trials, and 4 with 2 FID trials). There was

Williams et al. � Behavioral plasticity 65
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no significant difference across site in the number of successive

flushes (v2 ¼ 0.37; P¼0.999). Bad weather (rain and high wind)

during our research trip prevented further data collection.

FID
Skink identity alone explained 47% of the variation in FID. For in-

dividual response to multiple flushes, 2 models had approximately

the same AIC (M3 AIC¼ �196.7, M4 AIC ¼ �195.23, Table 1,

dAIC ¼ 1.5). We discuss M3, the random intercept, random slope

model without a significant interaction between site and trial

(Table 1) because it had the smallest AIC, but conclusions for the 2

models are similar. After accounting for significant observer and SD

effects, we found that neither site nor trial explained significant vari-

ation in FID (Table 2). However, a pair-wise comparison of site

means revealed that skinks tolerated significantly closer approaches

at the low human disturbance site versus the medium human dis-

turbance site (estimate ¼ �0.1, t ¼ �2.40, P¼0.02, reference level

low). There were no significant differences in site means between

high- and medium-disturbance sites (estimate ¼ 0.0, t ¼ �1.06,

P¼0.29, reference level high) or between high- and low-disturbance

sites (estimate ¼ 0.1, t¼1.63, P¼0.11, reference level high).

Overall, FID did not change significantly across trial and did not ex-

hibit a pattern across the human disturbance gradient (Figure 1).

The best model that explained variation in FID for individuals

among sites was the random intercept, random-effect model (S1) ra-

ther than the random intercept model (S0, AICrandom intercept, random

effect ¼ �147.4, AICrandom intercept ¼ �144.1). Based on this signifi-

cant model comparison, we infer that site accounted for significant

variation in individual plasticity (Figure 1). Skinks from the highest

disturbance site had the least variation in their FIDs across multiple

flushes (standard deviation ¼ 0.078), whereas the medium-

disturbance site had an intermediate level of variation (standard

deviation ¼ 0.099). The most variation in individual FIDs occurred

at the low-disturbance site (standard deviation ¼ 0.167). Finally,

SD and observer effects were also significant in our model (Table 3).

DF
Skink identity alone explained 39% of the variation in DF. For vari-

ation in individual response to multiple flushes, the random intercept

with trial model (M1, Table 4) was the best mixed model (dAIC ¼
2.22). After accounting for observer effects, we found that significant

variation in DF was explained by trial, but not by SD or site.

However, a pair-wise comparison of DF across sites revealed that

skinks fled significantly shorter distances at the low-disturbance site

when compared with high-disturbance site (estimate ¼ 0.2, t¼2.62,

P¼0.010, reference level high), but not when compared with the me-

dium-disturbance site (estimate ¼ �0.1, t ¼ �1.50, P¼0.14, refer-

ence level low). The distance high-disturbance site skinks fled was not

statistically different from their DF at the medium-disturbance site

(estimate ¼ 0.1, t¼1.33, P¼0.19, reference level high) (Table 5).

Overall, DF decreased across trial and decreased across sites from

high human disturbance to low human disturbance (Figure 2).

For variation of DF for individuals among sites, we found that

our best model remained the random intercept model (S0, AICrandom

intercept ¼ 78.78; AICrandom intercept, random effect ¼ 81.44). This sug-

gested that site did not significantly explain variance in DF. For the

fixed effects, only observer effects were significant (Figure 2;

Table 6).

Discussion

Different antipredator behaviors may be differentially influenced by

human activity. We found that skinks tolerated the closest approach

distance (lowest FID) at the low-disturbance site, but that that they

did not differ in their approach distances between the medium- and

high-disturbance sites or between the high- and low-disturbance

sites. To summarize, skinks living in areas with limited human and

domestic animal exposure allowed the observer to get closer to

them, whereas those living in areas with humans, dogs, cats, and

chickens fled at greater distances. These results are consistent with

an underlying process of sensitization and this result was unexpected

given prior results (McGowan et al. 2014). This pattern was

repeated for DF. Skinks had the lowest DF at the low-disturbance

site and the highest DF at the high-disturbance site with nonsignifi-

cant differences between low- and medium-disturbance sites and

medium- and high-disturbance sites.

This pattern for DF is likely a consequence of each skink’s prox-

imity to vegetation at the more natural sites, which they use as ref-

uge. Although not formally quantified, there appeared to be more

natural vegetation at the low-disturbance site than at either the

Table 1. Models fitted in lme4 to study variation in FIDs of skinks

Model Fixed effects Random effects AIC

M0FID—Regression Observer, site, logSD N/A N/A

M1FID—Random intercept Observer, site, logSD, trial Intercept: skink �191.7

M2FID—Random intercept/fixed interaction Observer, site, logSD, trial, site*trial Intercept: skink �191.7

M3FID—Random intercept/random slope Observer, site, logSD, trial Intercept: skinkSlope: trial 2196.7

M4FID—Random intercept/random slope with site–trial interactions Observer, site, logSD, trial, site*trial Intercept: skinkSlope: trial �195.23

Dependent variable is logFID for all models. Bold text indicates model with lowest AIC.

*Indicates an effect interaction.

Table 2. Fixed effects from M3, the random intercept, random slope

model without the interaction of trial and site explaining variation

in individual FID response to multiple flushes

Variable Estimate (SE) t P

(Intercept) 0.697 1.914 0.057

Observer

A 20.155 24.178 <0.001

B �0.008 �0.220 0.826

Site

Medium 0.035 1.055 0.294

Low �0.068 �1.632 0.106

logSD 0.590 4.210 <0.001

Trial �0.006 �0.525 0.601

Significant effects are in bold.
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high-disturbance site or medium-disturbance site. Thus, skinks flee-

ing to cover did not have to move as far to reach a refuge at the low-

disturbance site. This pattern is consistent with prior findings, which

found that the distance ungulates fled (Stankowich 2008) and the

distance lizards fled (Cooper and Wilson 2007) increased with

increasing distance from refuges. Animals also have greater FIDs

when they are farther from a refuge (Cooper and Wilson 2007).

Thus, the more “natural” habitat, rather than variation human dis-

turbance, may explain the pattern of sensitization that our results

showed for FID.

Sensitization within urban habitats may also increase with

increased predation risk because antipredator behavior is costly and

should only increase with predator pressure (Brock et al. 2015).

Human presence triggers a stress response in many species, indicat-

ing that humans are perceived as a threat (Villanueva et al. 2011). In

addition, humans frequently introduce novel predators to urban

habitats through their domesticated pets, such as dogs and chickens.

Lizards, mammals, and birds in urban areas experience high preda-

tion rates due to cats and other domesticated animals (Koenig et al.

2002; Loyd et al. 2013). Domesticated animals also have higher

population densities around areas of high human occupation. Our

skinks are known to be eaten by chickens, which roam freely near

our high-disturbance site. The presence of these predators at high

density may increase skink predator wariness and antipredator

responses.

Individual-level variation in antipredator behavior also covaried

with the human disturbance gradient and we found the lowest vari-

ance at the highest disturbance site, intermediate variance at the me-

dium site, and the highest variance at the lowest disturbance site.

We do not believe that this was because of substantial differences in

habitat at the different sites; skinks were found in leaf litter near

trees and shrubs at all sites. To summarize, skinks living closest to

humans were less variable, whereas those living in more natural sites

had the greatest variability in their response to experimental

approaches. Individual variance across sites could not be evaluated

for DF because the best model did not include site as a random ef-

fect; a finding that suggested that site explained no significant vari-

ation in DF.

The pattern of reduced variation in FID at the individual level in

the high-disturbance site is consistent with natural selection, pheno-

typic sorting, or behavioral plasticity (Møller et al. 2015).

Phenotypic sorting is the process by which individuals settle in dif-

ferent habitats based on their personal tolerance to each local envir-

onment (Edelaar et al. 2008). Sorting has been suggested to explain

the higher abundance of bold over shy birds in urban environments

(Clergeau et al. 2006; Croci et al. 2008). However, due to their

small body size, skinks likely have low dispersal capability, making

phenotypic sorting unlikely. This leaves behavioral plasticity or nat-

ural selection as the most likely explanations. Changes in selection

pressure often cause changes in antipredator behavior (Cooper et al.

2015), and it is possible that individuals more adapted to human

presence were more likely to survive and reproduce. This selection

pressure would ultimately reduce phenotypic variation as behaviors

less-suited to the urban environment were lost. Behavioral plasticity

is the ability of an individual to change their behavior when faced

with novel environmental challenges. Although our population may

be individually flexible in their behavior over a human disturbance

gradient, we did not explicitly measure this in our study.

Urbanization has been known to affect escape behavior in liz-

ards, whereas the resulting behavioral changes are highly species

Table 3. Fixed effects from the random intercept, random slope

model (S1) including interaction of site and trial explaining vari-

ation in FID for individuals among sites

Variable Estimate (SE) t P

(Intercept) 0.663 1.884 0.061

Observer

A 20.196 25.357 <0.001

B �0.043 �1.166 0.247

Site

Medium 0.081 1.570 0.120

Low �0.131 �1.789 0.077

LogSD 0.613 4.50 <0.001

Trial �0.003 �0.260 0.796

Trial: low 0.027 1.13 0.258

Trial: medium �0.238 �1.245 0.215

Significant effects are in bold.

Figure 1. Skink FID responses across multiple approaches. Shown are the means and slopes of log10 FID from individuals after multiple flushes at the 3 sites

which vary in their degree of human exposure. Thick black line indicates the average slope per site. There is no significant difference in average slopes across

sites.
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specific, selection appears to be the most likely cause in most cases.

Common garden skinks Lampropholis guichenoti had longer FIDs

and sprint speeds in urban environments (consistent with sensitiza-

tion), but similar DFs between both urban and natural sites (Prosser

et al. 2006). Western fence lizards Sceloporus occidentalis on 2 sep-

arate college campuses had reduced antipredator responses com-

pared with rural lizards around each site (Sparkman et al. 2018),

which is a finding consistent with habituation. Several invasive liz-

ard species in Southern California were found to have less variation

in risk-taking behavior when compared with the native Western

fence lizards Sceloporus occidentalis (Putman BR et al., manuscript

under review), which may contribute to their success in urban habi-

tats. Our own study found that skinks had lowest variation in FID

at high-disturbance sites, supporting the idea that urban develop-

ment acts as an ecological homogenizer (McKinney 2006), which

decreases phenotypic difference in behavioral responses of animals

adapting to life in human-populated habitats.

Behavioral plasticity may alter individual phenotypes and it is

possible that skinks exposed to humans have changed their antipre-

dator responses to best suit the new environment. This was found

for the Indian rock agama Psammophilus dorsalis where urbanized

males chose lower perches that were closer to refuges than rural

males. Urban males also had lower average FIDs and less variation

in FID than rural lizards, with plasticity and prior habituation as the

likely explanation (Batabyal et al. 2017). We are thus unable to rule

out either the possible effect of an individually plastic response to

humans or natural selection, as mechanisms for explaining reduced

variation. Indeed, both mechanisms could be at work.

There are consequences for the loss of variation in escape behav-

ior within urban areas. One such consequence may be a possible loss

of the genetic diversity underlying behavioral diversity (Hallsson

and Björklund 2012; Smith and Blumstein 2013). This loss of both

behavioral and genetic diversities could reduce a population’s

resilience when faced with subsequent perturbations (Laikre 2010).

If individual variation in behavioral plasticity is generally decreasing

in urban areas, it could reduce species’ ability to evolve and persist

in the Anthropocene. Thus, understanding the effects of urbaniza-

tion on individual variation in escape behavior is important in order

to better predict which individual characteristics will be more likely

to persist in urban populations. Here, we studied individual vari-

ation on unmarked individuals and thus we could not quantify vari-

ation on a longer time scale, although prior work has shown that

plasticity may vary over different timescales (Highcock and Carter

2014; Biro and Stamps 2015; Johnson et al. 2017). Future studies

would benefit from studying plasticity of marked individuals over

longer time scales (e.g., Highcock and Carter 2014).
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Table 4. Models fitted in lme4 to study variation in the distance skinks fled

Model Fixed effects Random effects AIC

M0DF—basic regression Observer, site, logSD N/A N/A

M1DF—random intercept trial Observer, site, logSD, trial Intercept: skink 38.75

M2DF—random intercept with site–trial interaction Observer, site, logSD, trial, site*trial Intercept: skink 42.26

M3DF—random intercept/random slope with site–trial interactions Observer, site, logSD, trial Intercept: skinkSlope: trial 41.94

M4DF—random intercept/random slope with site–trial interactions Observer, site, logSD, trial, site*trial Intercept: skinkSlope: trial 45.41

Dependent variable is logDF for all models. Bold text indicates model with lowest AIC.

*Indicates an effect interaction.

Table 6. Fixed effects from the random intercept model with site–

trial interaction (S0) explaining variation in individual DF response

for individuals among sites

Variable Estimate t P

(Intercept) 1.580 2.346 0.021

Observer

A 0.213 3.632 0.005

B 0.027 0.452 0.652

Site

Medium �0.027 �0.266 0.791

Low �0.196 �1.621 0.109

logSD �0.0128 �0.161 0.873

Trial �0.044 �1.263 0.210

Trial: low 0.017 0.286 0.776

Trial: medium �0.024 �0.476 0.635

Significant effects are in bold.

Table 5. Fixed effects from the best fit model, random intercept

with trial model (M1), explaining individual variation in DF re-

sponse to multiple flushes

Variable Estimate (SE) t P

(Intercept) 1.588 2.423 0.016

Observer

A 0.212 3.752 <0.001

B 0.027 0.467 0.642

Site

Medium �0.068 �1.328 0.188

Low 20.166 22.621 0.010

SD 0.152 0.602 0.548

Trial 20.049 22.068 0.040

Significant effects are in bold.
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perception of rural and urban Burrowing Owls exposed to humans and

dogs. Behav Processes 124:60–65.

Carrete M, Tella JL, 2010. Individual consistency in flight initiation distances

in burrowing owls: a new hypothesis on disturbance-induced habitat selec-

tion. Biol Lett 6:167–170.
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