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Studies in natural populations are essential to understand the evolutionary
ecology of senescence and terminal allocation. While there are an increasing
number of studies investigating late-life variation in different life-history
traits of wild populations, little is known about these patterns in social
behaviour. We used long-term individual based data on yellow-bellied mar-
mots (Marmota flaviventer) to quantify how affiliative social behaviours and
different life-history traits vary with age and in the last year of life, and
how patterns compare between the two. We found that some social beha-
viours and all life-history traits varied with age, whereas terminal last
year of life effects were only observed in life-history traits. Our results
imply that affiliative social behaviours do not act as a mechanism to
adjust allocation among traits when close to death, and highlight the impor-
tance of adopting an integrative approach, studying late-life variation
and senescence across multiple different traits, to allow the identification
of potential trade-offs.

This article is part of the theme issue ‘Ageing and sociality: why, when
and how does sociality change ageing patterns?’
1. Introduction
Senescence is the irreversible accumulation of damage with increasing age, lead-
ing to deteriorating cellular and physiological function and eventual death [1,2].
Thus, the impact that age has on performance and function late in life has been
the focus of many recent studies in natural populations (reviewed by the authors
in [3,4]). There is substantial variation in how traits change late in life. Some traits
undergo a gradual decrease over several years, as is usually expected for senes-
cence, while others show an abrupt decrease in trait value close to death,
potentially signalling a more general physiological collapse, for example,
owing to terminal illness [5]. By contrast, there are also positive effects of age
later in life, which can be attributed to increasing experience or maturity [6,7],
social aspects (e.g. dominance position, [8]; number of helpers, [9]), terminal
investment [10] and/or terminal allocation (sensu [11]), which unlike terminal
investment does not necessarily imply fitness costs. Because observed patterns
can differ among traits, it is important to study a suite of factors rather than a
single trait in isolation (see [12–14]). Doing so permits the detection of different
processes that contribute to the same senescence patterns and to identify
potential trade-offs that would not have otherwise been detected [13,15].

Most senescence studies in natural populations have focused on survival
and reproduction (reviewed by Nussey et al. [3]), the two core traits related
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to fitness [16]. However, there are a growing number of
studies that test for age-dependent decreases in other traits
that underlie survival and reproduction, including body
mass (e.g. [17,18]), physiological traits (i.e. traits related to
the immune system, [13,19,20]; traits related to stress hor-
mones: [19,21]), and behaviour (e.g. foraging, [19,22–24];
dispersal, [25]). Terminal effects, typically estimated through
the so-called last year of life effects, have most frequently
been tested in studies on reproduction (e.g. [5,14,26–29])
and body mass (e.g. [17,18,30]). What stands out is that com-
paratively few studies in natural populations have quantified
late-life variation in behavioural traits (but see [31]), with
studies on social behaviour being particularly uncommon.
This is surprising because sociality is known to impact long-
evity [32,33] and has known benefits and costs associated
with it [34]. It is possible that studies on such traits are rare
because behaviour has not typically been considered part of
the senescence process [31].

Living in groups may protect animals from predation [35],
permitting them to allocate less time to antipredator vigilance
andmore time to other fitness-related activities [36]. However,
group living also exposes animals to more parasites and
pathogens [37]. Such disease challenges may drive the evol-
ution of compensatory social responses such as
allogrooming [38]. While it is commonly assumed that social-
ity is associated with decreased extrinsic mortality and hence
increased longevity, this is not always seen [33]. Nonetheless,
in humans [32] and a variety of other social mammals (e.g.
[39–41]), those with stronger social relationships do live
longer lives. Interestingly, and while social relationships may
vary over the course of an individual’s lifetime [42], less is
known about patterns of senescence. Overall, we know very
little about late-life variation in social behaviour of free-
living non-primate mammals and how this variation com-
pares to patterns observed in life-history traits.

One challengewith studying late-life variation across mul-
tiple traits in natural systems is that it requires detailed
longitudinal data for many individuals with known lifespans.
We capitalized on a long-term study of free-living, individu-
ally marked yellow-bellied marmots (Marmota flaviventer), a
long-lived rodent species with lifespans up to 16 years in the
wild (D. T. Blumstein 2021, unpublished observations) and
annual adult survival probabilities of 72–80% [43]. We know
that traits reflecting social networks in the marmots are herita-
ble [44] and can negatively impact longevity [45]; and, while
we know that older females are less social [42], we are aware
of no previous studies that have specifically focused on late-
life variation in social behaviour. As for life-history traits, we
know that stress hormone levels (faecal glucocorticoid metab-
olites), which negatively affect marmot survival [46], are
negatively associated with age [47], as is vigilance behaviour,
but only when adults are in good body condition [48]. In
addition, separate studies have found evidence in support of
senescence in reproduction and body mass [18,49], and of a
terminal decrease in body mass [18]. To date, age-related vari-
ation in traits related to immune response has not been
investigated in yellow-bellied marmots.

Here, we analyse late-life variation in 11 social network
traits and five life-history traits (reproduction, body mass,
stress hormone levels, immune response and vigilance behav-
iour), to determine whether social behaviour varies with age
and close to death, and how the observed patterns compare
to those in life-history traits. We focused on females, for
which there were adequate data available for all traits.
If social behaviour is costly (as suggested by Blumstein et al.
[45]), we expect gradual and/or terminal decreases in sociality
late in life based on the senescence hypothesis, whereas
benefits gained through social behaviour may compensate
costs or even lead to animals being more social [33]. For life-
history traits, we expect stress hormone levels and immune
response to be higher at older ages and/or later in life, and
body mass, reproduction and vigilance to decrease either
gradually, terminally or both.
2. Methods
(a) Study system
Yellow-bellied marmots were studied along a 5 km stretch of the
Upper East River Valley, CO, USA (38°570 N, 106°590 W; 2900 m
elevation; [43]), in and around the Rocky Mountain Biological
Laboratory in Gothic. Most individuals live in colony groups
with a harem-polygynous mating system, where they share a ter-
ritory with other related adult females, yearlings, juveniles and
the resident adult male. Colony locations in our study area are
classified as either up-valley or down-valley sites, depending
on whether they were in the higher or lower elevation sections
of the valley [50]; most individuals do not move between them.

(b) Live-trapping data collection
Every year between 1962 and 2018, from mid-May to mid-
September, we regularly live trapped marmots at known burrow
locations. At first capture, individuals were marked with uniquely
numbered ear tags and a dorsal fur symbol (which was refreshed
when required), to allow identification across years and during
observations from afar, respectively. Females in our dataset were
first caught as juveniles or yearlings and are thus of known age.

Females have at most one litter per year. We recorded repro-
ductive status during trapping events and assigned offspring to
their mothers through behavioural observations, and since
2002, confirmed maternity via genetic analyses (98% matching),
based on a likelihood approach of 8–12 microsatellite loci at
95% trio confidence level (see methods in [51]). Pups are born
underground and first emerge weaned and fully independent
in late June or July [43]. Once offspring emerged, we intensified
our trapping efforts to mark them within one to two weeks. New
pups are unlikely to be missed, as all colonies are very closely
monitored during the pup emergence season. We used the
number of weaned offspring to quantify reproductive success.

An individual’s body mass was measured at every capture,
using a handling bag and digital scales. To compare body mass
across years, for each individual, we standardized measures
taken at various dates to 15 August (late-season body mass is
important in predicting overwinter survival) using best linear
unbiased predictors (following [52,53]; also see [54]).

Faecal samples were collected and immediately stored on ice
whenever marmots defecated in the trap or during handling, and
later frozen at −20°C. Faecal glucocorticoid metabolites (hence-
forth ‘glucocorticoids’) were then extracted from faecal samples
and quantified yearly following established protocols and by
using a validated assay [55].

As a proxy metric for immune response, we chose the quoti-
ent of the absolute neutrophil and lymphocyte counts (i.e. N : L
ratio), a measure that is commonly used as an indicator for
immunological challenges and physiological stress [56–58]. We
collected 2–3 ml blood from the femoral vein of captured mar-
mots, and stored samples in vacutainers containing heparin or
ethylenediamine tetraacetic acid on ice until being processed in
the laboratory. We made thin film blood smears within 2 h of
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collecting the samples [48]. Slides were stained with a Thermo
Fisher Scientific Hema 3 Stat Pack. The N : L ratio was then calcu-
lated using a standard procedure that entailed counting
neutrophils, lymphocytes, basophils and monocytes until 100
cells were counted or 30 min passed, whichever came first [59].
ypublishing.org/journal/rstb
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(c) Observational data collection
Near daily colony observations from 2002 to 2018 were conducted
from mid-April to mid-September, from 7.00 to 10.00 and
from 16.00 to 19.00, when marmots are most active and during
periods when it was not raining or snowing; vigilance obser-
vations were not conducted when it was excessively windy.
Observations were conducted by trained observers from distances
that did not interfere with marmot activity using binoculars and
15–45× spotting scopes.

If a female was not observed during a given season, she was
recorded as dead because adults have an annual recapture
probability of greater than 98% (see multistate mark–recapture
analyses, [51,60]). Indeed, given the intensive monitoring
regime and site fidelity in adult females, an unobserved female
is almost certainly dead. The exact cause of mortality is usually
unknown, and we are thus looking at all-cause mortality.
Based on the year of death, we were also able to estimate lifespan
(i.e. age of last observation) and the last year of life (LYL), which
describes the year prior to the year of death.

To quantify vigilance while foraging, we conducted 2 min
focal animal observations during which we noted the following
behavioural transitions: foraging in a bipedal or quadrupedal
position, bipedal or quadrupedal looking (henceforth ‘vigi-
lance’), locomotion and out of sight [48,61]. Observations were
dictated into handheld recorders and later scored in JWATCHER

1.0 [62]. Observers were trained to identify all behaviours in
the ethogram and then to quantify them using JWATCHER until
their intra-observer reliability was greater than or equal to 0.95.

We used all-occurrence sampling to record affiliative social
interactions between marmots. These included behaviours such
as greeting each other, allogrooming, sitting in close proximity,
playing and foraging together (ethogram in [63]). Following
Blumstein et al. [45], we used the same 11 social network statistics
(i.e. indegree, outdegree, betweenness centrality, incloseness,
outcloseness, local clustering, global clustering, negative average
shortest path, eigenvector centrality, instrength and outstrength;
for further details, see [64–66]) to estimate sociality for individuals
with at least 5 yearly observations.

Indegree and outdegree describe how many other individ-
uals a subject receives interactions from and initiates
interactions with, respectively. Betweenness centrality is the pro-
portion of shortest path lengths in the network between all pairs
of individuals that are connected to a given individual. Closeness
measures how close an individual is to all other individuals in
the network through both direct and indirect relationships. Inclo-
seness and outcloseness describe the number of received and
initiated interactions, respectively. Clustering represents network
cliquishness and is calculated by dividing an individual’s actual
number of relationships by the total possible number that it
could form with adjacent neighbours in theory. We specifically
used local clustering, which refers to an individual’s embedded-
ness in the network, and global clustering, which describes
network density around a certain individual. The average short-
est path is measured as the average number of social network
members that a given individual needs to go through in order
to contact another individual in the network, and thus represents
the efficiency of information transfer. We used the additive
inverse of average shortest path (i.e. ‘negative average shortest
path’) to facilitate interpretation of this variable alongside the
other traits. Eigenvector centrality describes an individual’s con-
nectedness in the network, and it also takes indirect relationships
among its neighbours into account. Finally, instrength and
outstrength describe received and initiated interactions, respect-
ively, where strength is calculated as the frequency (sum of
weights) of interactions between an individual and its adjacent
neighbours. For all traits, a larger value is interpreted as being
more social. Additional detail on these data can be found in
Blumstein et al. [45].
(d) Statistical analyses
To test for changes in sociality with age and in the year before
death, for each social network trait except instrength, outstrength
and negative average shortest path, we fitted a generalized linear
mixed-effects model (GLMM) with a binomial error distribution.
Instrength and outstrength were fitted in GLMMs assuming
a Poisson distribution. For negative average shortest path, we
fitted a linear mixed-effects model (LMM) with Gaussian error
function. To test if age and proximity to death influence social be-
haviour, we included second-order orthogonal polynomials for
age, and a two-level factor for LYL (yes versus no) as fixed
effects. To control for environmental effects on sociality, and
potential environmental dependence of age and LYL effects on
sociality, we also fitted valley as two-level factor (up versus
down), and two-way interactions between valley and age
(linear and quadratic), and valley and LYL.

To test for changes in life-history traits with age and in the
year before death, we fitted LMMs with Gaussian distribution
for glucocorticoids and body mass, and GLMMs with a Poisson
error structure for the number of offspring and N : L ratio, and a
binomial distribution for vigilance. The model for N : L ratio was
fitted with neutrophil count as the response and the log of
lymphocyte count as an offset variable [67], which allows us to
adequately evaluate the variation in the N : L ratio while
retaining the Poisson distribution for neutrophil count.

The models for life-history traits also included fixed effects of
age (second-order orthogonal polynomials), a two-level factor for
LYL and valley, and two-way interactions between valley and
age and valley and LYL. In addition, to control for potential
reproductive suppression (as previously reported in yellow-bel-
lied marmots, [68]; and Alpine marmots, Marmota marmota;
[69]), and density dependence of age and LYL effects on repro-
duction and vigilance, we fitted the number of adult females
within a colony in each year (henceforth ‘density’), and the inter-
action of density with age and LYL as covariates. Models for
faecal glucocorticoids, N : L ratio and vigilance further included
fixed effects of day of year and time of day, to account for seaso-
nal and daily variation in those response variables, respectively.
Finally, to account for potential seasonal and daytime depen-
dence of age and LYL effects on glucocorticoids, N : L ratio and
vigilance, we fitted interactions of day of year and time of day
with age and with LYL.

To confirm that negative quadratic age effects indeed
described a decrease in a trait at old ages, rather than an increase
at young ages followed by a plateau (and vice versa for positive
quadratic age effects), we refitted models on subsets of the data,
including only observations at older ages (7+ years) and only a
linear age effect. To facilitate model convergence and allow for
comparison across traits, all continuous predictors were scaled
and centred with a mean of 0 and a variance of 1. All models
included random effects of female identity, year and female
year of birth to account for non-independence of repeated obser-
vations of individuals, years and cohorts, respectively. We also
included an observation-level random effect in the Poisson-dis-
tributed models to account for overdispersion [67], as indicated
by the ratio of residual deviance to residual degrees of freedom
(ratios of 4.13, 3.71, 1.75 and 21.8 for instrength, outstrength,
number of offspring and N : L ratio, respectively).
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Models were fitted with the glmer and lmer functions from
the package lme4 [70] in R v. 3.6.3. [71]. To avoid biasing esti-
mates in our models, non-significant interactions ( p > 0.05)
were backwards eliminated based on ANOVA type III tests,
but otherwise full models with non-significant fixed effects
were retained [72]. Fitting age as orthogonal polynomials
allowed us to independently test and interpret linear and
quadratic age effects within the same model [73].

Because individual heterogeneity and selective disappearance
are known to cause biases in longitudinal and cross-sectional
analyses of age [74,75], we also fitted a series of additional
models with data subsets that comprised females that reached a
lifespan of at least 6 years. These models yielded qualitatively
similar results to the models fitted to the full datasets, leading
us to conclude that population-level age effects can be interpreted
at the individual level. Selective disappearance biases in the data
structure were minimized by only including individuals from
cohorts that were almost completely extinct (maximum 1 or 2
surviving individuals) in the analyses.
Soc.B
376:20190745
3. Results
(a) Data summary
Datasets ranged in size between 133 and 1315 data points (elec-
tronic supplementary material, table S1). Female age ranged
between 2 and 14 years across all datasets, except for social net-
work traits and N : L ratio, where the maximum age was 12
years. The median female age was 4.0 in the vigilance dataset,
3.5 in the body mass dataset and 3.0 in all other datasets.
Details regarding the structure of each individual dataset are
listed in the electronic supplementary material, table S1.

(b) Effects of age and last year of life
Age was significantly associated with 5 out of 11 social net-
work traits (figure 1a–k; electronic supplementary material,
table S2), namely local clustering, global clustering, eigenvec-
tor centrality, outstrength and instrength. We found a positive
linear effect of age for local clustering, and a positive quadra-
tic effect of age for global clustering (figure 1; electronic
supplementary material, tables S2–S4). Local clustering (i.e.
how embedded an individual is in the network) increased
with age (figure 1f ), and global clustering (i.e. network den-
sity) decreased prior to about age 5 and then increased at
older ages (figure 1g). We also found a negative linear
effect of age for both eigenvector centrality (i.e. influence)
and instrength (i.e. received interactions), and a negative
linear and a positive quadratic effect of age for outstrength
(i.e. initiated interactions; figure 1; electronic supplementary
material, tables S2 and S5–S7), showing that eigenvector
centrality and instrength decreased with age, whereas ous-
trength decreased at younger ages and increased in old age
(figure 1i–k). Contrary to our expectations, there was no
significant change in any of the social network traits in the
year preceding death compared to earlier years (electronic
supplementary material, tables S2–S13).

On the other hand, there were significant age-related
changes in all life-history traits (figure 1l–p; electronic sup-
plementary material, table S2). Specifically, there was an
interaction between valley and quadratic age for glucocorti-
coids and between valley and linear and quadratic age for
body mass. Body mass increased with age, with a greater
increase in the down-valley environment, and at older ages,
both glucocorticoids and body mass decreased, but only
down-valley (figure 1l,m; electronic supplementary material,
tables S2, S14 and S15). We also found a linear positive and
a negative quadratic age effect for both number of offspring
and N : L ratio (figure 1; electronic supplementary material,
tables S2, S16 and S17). Both traits increased prior to about
age 7 or 8 and then decreased in old age (figure 1n,o). For
vigilance, we found an interaction between season and
linear age (figure 1; electronic supplementary material,
table S18), showing that vigilance increased with increased
age, but more so later in the season (figure 1p). Models fitted
to data subsets truncated at age 6 confirmed quadratic age
effects in the main models, except for N : L ratio, suggesting
that part of the negative quadratic age effect describes
increases at young ages followed by a plateau, rather than a
decrease at old ages.

We further found significant changes in body mass,
number of offspring and vigilance in the last year of life (elec-
tronic supplementary material, tables S2, S15, S16 and S18).
Specifically, we found a negative LYL effect for body mass,
showing that body mass was lower in the last year of life com-
pared to previous years (electronic supplementary material,
table S14). For the number of offspring, we found an inter-
action of density with LYL, showing that the number of
offspring was lower in the last year of life, even more so at
greater colony densities (electronic supplementary material,
table S16). Finally, for N : L ratio and vigilance, we found
interactions of season with LYL, showing that N : L ratio was
higher and vigilance lower in the least year of life compared
to previous years, more so later in the season (electronic
supplementary material, tables S2, S17 and S18).
4. Discussion
Little is known about late-life variation in social behaviour,
and how it compares to patterns observed in life-history
traits. Our study yields two important insights regarding
late-life variation in social behaviour. First, sociality varies
with age (i.e. effects can stretch out over a long time), and
we provide a rare example for potential senescence in affilia-
tive social behaviour. Second, there does not appear to be
enough variation in such traits to allow terminal adjustment
of affiliative behaviours at the end of life in favour of other
important life-history traits. Yet, life-history traits show strik-
ing complementary patterns prior to death, suggesting that
changes in other behaviours (vigilance and foraging) may
be used to compensate for detrimental late-life effects.

(a) Age-dependent patterns
The frequency of received interactions, as well as an individ-
ual’s influence decreased with increasing age, while initiated
interactions, network density and embeddedness within its
network (i.e. cliquishness) increased. The increase in trait
values for initiated interactions, network density and embedd-
edness potentially reflect that older females have larger
matrilines (related females; [43]). Negative effects of age on
social network traits, showing that older females are less
social, have previously been reported [42,45], and are in line
with our expectation that sociality is costly. However, the
increase in initiated interactions suggests that old females
might compensate for increasing social isolation as shown
by the decrease in received interactions and influence on
the network.
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In life-history traits, patterns of age-dependent variation
were largely consistent with the senescence hypothesis,
while exhibiting a high degree of synchrony [14,76]. The
number of offspring increased in early years of adult life,
followed by a decrease later in life. The age-dependent
decrease is in linewith previous studies on reproductive senes-
cence [4]. Early-life increases could be owing to individuals
becoming better at acquiring or allocating resources (i.e.
increasing experience; [6,77]). Results for immune response,
measured as N : L ratio, suggested a similar pattern to that of
offspring number, although there was no significant decrease
in old age. Vigilance increased with age, more so later in
the season, possibly because pups are present. Body mass
increased with age in both environments, with a greater
increase down-valley, and at old ages, both body mass and
stress hormones decreased, but only down-valley. The absence
of senescence in body mass up-valley has previously been
reported [18] and may reflect physiological constraints in a
harsher environment [78], where females exhibit little
senescence because they have little mass to lose. Interestingly,
however, stress hormone levels also tended to increase at older
ages up-valley, suggesting that patterns in these two traits may
be linked. One possible explanation is that old females living
in the harsher (i.e. more stressful) environment may not be
in good enough condition to reproduce. Various studies
show that chronic stress is linked to reduced reproductive per-
formance (e.g. [79,80]), and stress levels are indeed known to
impact reproduction in the marmots [81].
(b) Terminal effects
Contrary to our expectation, there was no significant change
in social behaviour in the last year of life compared to earlier
years. This suggests that a change in social behaviour at the
end of an individual’s life is unlikely to provide a perform-
ance advantage, or that it acts as a marker for general
physiological collapse. By contrast, we found that life-history
traits exhibited terminal effects in all traits except stress
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hormone levels. The absence of elevated stress hormones in
the last year of life compared to the rest of life supports the
idea that some stress effects are more likely to be chronic,
though it is possible that terminal stress responses occur
over shorter timescales and last year of life effects do not
capture such variation.

Body mass and number of offspring decreased in the year
prior to death, consistent with a general physiological col-
lapse at the end of life. A terminal decrease in body mass is
likely to be a good indicator for impending death, given
that marmots with a low body mass late in the season (i.e.
at entry to hibernation) are unlikely to survive the winter
[82,83]. We also found a greater decrease in the number of
offspring at higher colony densities, suggesting that females
may be reproductively suppressed [68], or provide alloparen-
tal care [84] when they are close to dying and not able to
produce many pups of their own. These hypotheses remain
to be explicitly tested.

Resources late in life could also be allocated to other impor-
tant functions, such as immune responses. We found a
terminal increase in N : L ratio, which was more pronounced
later in the season. This suggests increased allocation to
immune function towards the end of life, possibly involving
a trade-off with reproduction or other traits [85], and matches
the physiological collapse indicated by body mass and repro-
duction. The results for vigilance behaviour also match those
of the other life-history traits that exhibited terminal effects.
Vigilance decreased in the last year of life and more as the
season progressed. Later in the season, females may take
greater risks and reduce vigilance in favour of time spent fora-
ging [48,86]. Females are likely to require more food to
compensate for their deteriorating physiological condition
and increased energetic expenses on behalf of the immune
system [85], as indicated by the terminal decrease in body
mass and litter size and the terminal increase in N : L ratio.
5. Conclusions
We found that age affected both social behaviour and life-his-
tory traits, whereas terminal effects in the last year of life were
only observed in the latter. This leads us to conclude that social
relationships are relatively stable in the last year of life,
whereas in life-history traits, terminal effects are almost the
rule. It may be easier to adjust major performance traits in
favour of one another, as reproduction and other life-history
traits are more likely to be directly energetically constrained
compared to sociality. We should emphasize that yellow-
bellied marmots, while social, are not obligately social, and
rates of social interactions are substantially lower than in
highly social species (e.g. primates). Owing to the low rate of
interactions, which normally decline as the year progresses,
we estimated every individual’s social network traits once
per year. Because behaviours are highly dynamic and can
change throughout the season, we might havemissed changes
in sociality that played out over shorter timescales, within a
season, that might be important in the last year of life.

Overall, our results imply that changes in social behaviour
at old ages reflect a shift in social interaction dynamics with a
decrease in received and an increase in initiated interactions,
suggesting social isolation by others and compensation.
Once an individual is close to dying, it has comparatively
low body mass and litter size, and is apparently more immu-
nologically challenged, thus it should focus on allocatingmore
time to foraging, which probably comes at the expense of vig-
ilance. Indeed, acquisition of resources is fundamental in
determining possibilities of allocation to other traits [87].
Further work that directly investigates associations between
vigilance and major performance traits would allow us to
gain a better understanding of the patterns observed here.
Thus, an exciting avenue of research would be to investigate
whether age and sociality interact to impact senescence trajec-
tories in life-history traits, and thus whether sociality can
dampen senescence effects in those traits.
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