
1030  |   wileyonlinelibrary.com/journal/jec Journal of Ecology. 2020;108:1030–1045.© 2019 British Ecological Society

 

Received: 23 July 2019  |  Accepted: 24 October 2019

DOI: 10.1111/1365-2745.13321  

R E S E A R C H  A R T I C L E

Leaf drought tolerance cannot be inferred from classic leaf 
traits in a tropical rainforest

Isabelle Maréchaux1,2,3  |   Laurent Saint-André4 |   Megan K. Bartlett5,6 |   Lawren Sack6  |    
Jérôme Chave2

1AMAP, Univ Montpellier, INRA, CIRAD, CNRS, Montpellier, France; 2Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS, Université Paul Sabatier, 
IRD, Toulouse Cedex 9, France; 3AgroParisTech-ENGREF, Paris, France; 4INRA, UR 1138 BEF, Champenoux, France; 5Department of Viticulture and Enology, 
University of California Davis, Davis, CA, USA and 6Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, USA

Correspondence
Isabelle Maréchaux
Email: isabelle.mj.marechaux@gmail.com

Funding information
Agence Nationale de la Recherche, Grant/
Award Number: ANR-10-LABX-25-01 and 
ANR-11-INBS-0001

Handling Editor: Pierre Mariotte

Abstract
1. Plants are enormously diverse in their traits and ecological adaptation, even 

within given ecosystems, such as tropical rainforests. Accounting for this diversity 
in vegetation models poses serious challenges. Global plant functional trait data-
bases have highlighted general trait correlations across species that have consid-
erably advanced this research program. However, it remains unclear whether trait 
correlations found globally hold within communities, and whether they extend to 
drought tolerance traits.

2. For 134 individual plants spanning a range of sizes and life forms (tree, liana, un-
derstorey species) within an Amazonian forest, we measured leaf drought toler-
ance (leaf water potential at turgor loss point, πtlp), together with 17 leaf traits 
related to various functions, including leaf economics traits and nutrient composi-
tion (leaf mass per area, LMA; and concentrations of C, N, P, K, Ca and Mg per leaf 
mass and area), leaf area, water-use efficiency (carbon isotope ratio), and time-
integrated stomatal conductance and carbon assimilation rate per leaf mass and 
area. We tested trait coordination and the ability to estimate πtlp from the other 
traits through model selection. Performance and transferability of the best pre-
dictive model were assessed through cross-validation.

3. Here πtlp was positively correlated with leaf area, and with N, P and K concentra-
tions per leaf mass, but not with LMA or any other studied trait. Five axes were 
needed to account for >80% of trait variation, but only three of them explained 
more variance than expected at random. The best model explained only 30% of 
the variation in πtlp, and out-sample predictive performance was variable across 
life forms or canopy strata, suggesting a limited transferability of the model.

4. Synthesis. We found a weak correlation among leaf drought tolerance and other 
leaf traits within a forest community. We conclude that higher trait dimensional-
ity than assumed under the leaf economics spectrum may operate among leaves 
within plant communities, with important implications for species coexistence and 
responses to changing environmental conditions, and also for the representation 
of community diversity in vegetation models.
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1  | INTRODUC TION

Functional traits are measurable quantities related to individual 
performance and response to environmental conditions (Violle 
et al., 2007). In plants, efforts to standardize trait measurement 
protocols have led to global trait databases (Cornelissen et al., 
2003; Kattge et al., 2011; Pérez-Harguindeguy et al., 2013) and 
the exploration of trait coordination and variation with envi-
ronment (Chave et al., 2009; Díaz et al., 2016; Reich, Walters, 
& Ellsworth, 1997; Wright et al., 2004). A major finding of this 
research is that, across biomes worldwide, species leaf traits 
covary, in particular revealing a global trade-off between pro-
ductive but short-lived leaves with rapid turnover and less pro-
ductive but more persistent leaves with longer carbon payback 
(henceforth denoted the leaf economics spectrum, LES; Wright 
et al., 2004). Other reported trait coordination within or across 
biomes led to the hypothesis that plants operate along a universal 
‘fast-slow’ spectrum (Reich, 2014), encompassing plant strategies 
related to all resources, including water (Li et al., 2018; Meinzer 
et al., 2008; Santiago et al., 2004; Zhu et al., 2018), and all plant 
organs, including stem and roots (Chave et al., 2009; Díaz et al., 
2016; Roumet et al., 2016). This formalizes earlier theories sug-
gesting that plant phenotypes correspond to a one-dimensional 
gradient from acquisitive but risky strategies to conservative but 
safe ones (MacArthur, 1972).

These functional tradeoffs have been transformative in the study 
of plant strategies by suggesting that the multidimensional plant 
trait space can be summarized into few well-described dimensions 
(Hodgson, Wilson, Hunt, Grime, & Thompson, 1999; Westoby & 
Wright, 2006). One major application is the development of new pa-
rameterization of land surface models (Lavorel et al., 2007; Prentice 
et al., 2007). Scheiter, Langan, and Higgins, (2013) and Sakschewski 
et al. (2015) used the leaf and wood economics spectra to constrain 
individual trait combinations in simulations of forest dynamics. The 
model representation of functional diversity thus improved from a 
few discrete strategies to a continuum of traits, while eliminating 
unrealistic trait combinations (Van Bodegom et al., 2012).

In initial studies of the leaf economics spectrum, hydraulic traits 
have received little attention, in spite of the global significance of 
vegetation response to drought (Allen et al., 2010; Anderegg et al., 
2015). Owing to the scarcity of field-measured drought tolerance 
traits (O'Brien et al., 2017), modellers proposed to infer plant hy-
draulic parameters from more easily measured traits such as leaf 
mass per area (LMA) or wood density (Christoffersen et al., 2016; 
Xu, Medvigy, Powers, Becknell, & Guan, 2016). However, these stud-
ies acknowledge that correlations of hydraulic and classic traits are 
weak, potentially reducing the predictive accuracy and increasing 

uncertainty in simulations (Christoffersen et al., 2016; Medlyn, De 
Kauwe, & Duursma, 2016).

There are several hypotheses for the weakness of these rela-
tionships. First, the absence of direct mechanistic link between 
hydraulic traits and other traits allow them to vary independently 
from each other in given contexts (Bartlett, Scoffoni, & Sack, 
2012; Blackman, Aspinwall, Resco de Dios, Smith, & Tissue, 2016; 
Gleason et al., 2016; Li et al., 2015; Sack et al., 2014). For example, 
across species within tropical forest communities, xylem drought 
tolerance, as inferred from xylem water potential at 50% loss of 
conductivity, was found to be uncorrelated with wood density 
(Powell et al., 2017), and leaf drought tolerance, as inferred from 
leaf water potential at turgor loss point (πtlp), was decoupled from 
LMA (Maréchaux et al., 2015).

A second hypothesis for weakness in trait relationships is that 
trait associations may vary at different scales (Sack et al., 2013). 
For example, globally established cross-species trait correlations 
may not hold across individual leaves or individual plants within 
community or populations (Anderegg et al., 2018; Messier, McGill, 
Enquist, & Lechowicz, 2017). Intra-specific variation, which may 
be associated with plant size, within-canopy variation, or broader 
environmental gradients, may be comparable or even greater than 
among-species trait variation (Li, Pei, Kéry, Niklaus, & Schmid, 
2017; Messier, McGill, & Lechowicz, 2010; Poorter, Castilho, 
Schietti, Oliveira, & Costa, 2018; Siefert et al., 2015), and traits 
can present contrasting sensitivities to these scale-dependent 
drivers (Messier et al., 2017; Rosas et al., 2019). Intraspecific 
variation can thus blur interspecific trait relationships, especially 
when trait values are drawn from independent studies led under 
various conditions (Clark et al., 2011; Laughlin et al., 2017). As 
an illustration, accounting for variation in tree size can substan-
tially strengthen trait relationships across species (Medeiros et al., 
2019). Overall, higher trait dimensionality than typically assumed 
under global trait spectra may operate within plant communities, 
with important implications for species coexistence and responses 
to changing environmental conditions (Clark, 2010; Laughlin, 
2014; Medeiros et al., 2019; Rosas et al., 2019).

We carried out a test of the hypothesis that a leaf drought toler-
ance trait, the leaf water potential at turgor loss point (πtlp; Bartlett, 
Scoffoni, & Sack, 2012), covaries with and can be predicted from 
other leaf-level traits within an Amazonian forest. These traits relate 
to multiple resource use and processes (Table 1), and our dataset 
covers a diversity of life forms and functions and contrasting micro-
habitats at the individual level within a tropical forest community. 
We thus explored trait covariation as it occurs in the field, without 
restricting ourselves to potential peculiarities of a life form or growth 
in a common environment (Keenan & Niinemets, 2016).

K E Y W O R D S

functional trait, leaf economics, leaf mass per area, liana, nutrient concentration, tree, turgor 
loss point, understorey
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We addressed the following specific questions: (a) How do leaf 
traits covary within a tropical forest community? Does πtlp correlate 
with other leaf functional traits and how does plasticity or intra-
specific variability affect these relationships? We hypothesized 
that πtlp should show stronger relationships with other physiolog-
ical traits such as carbon assimilation rate, than morphological 
traits such as LMA (Table 1), with stronger trends when parsing 
out intraspecific from interspecific variation. (b) Can leaf traits be 
combined to robustly estimate πtlp within a diverse community? If 
so, how transferable would such a predictive model be across life 
forms or environmental conditions? A high transferability of the 
model would suggest the model relies on robust mechanistic un-
derpinnings, and vice versa. We hypothesized that a fitted model 
combining several leaf traits would explain substantial variance in 
πtlp across plants in our dataset given the wide range of function 
these traits encompass, and yet hypothesized limited model trans-
ferability given the strong context-dependency of many trait–trait 
relationships.

2  | MATERIAL S AND METHODS

2.1 | Study sites and sampling strategy

Field measurements were conducted at the Nouragues Ecological 
Research Station in French Guiana, 120 km south of Cayenne within 
an undisturbed forest, ca. 50 km from Cacao, the closest village 
(4°05′N, 52°40′W; Bongers, Charles-Dominique, Forget, & Thery, 
2001). The site receives c.a. 3,000 mm/year rainfall, with significant 
seasonal and inter-annual variation due to the movement of the Inter-
Tropical Convergence Zone. The wet season lasts from December to 
July, often interrupted by a short dry period in March, and the dry 
season generally lasts from the end of August to November with 
2–3 months of precipitation <100 mm/month.

Data were collected in May 2014, in the middle of the wet season. 
In total, we collected mature leaves for 134 individuals, including 49 
canopy trees of 10 species belonging to 7 families, 43 canopy lianas 
of more than 11 families, 42 understorey plants of 12 species (27 
tree and liana saplings of 6 species, among which 5 were also sam-
pled as canopy individuals, and 15 individuals of 6 understorey spe-
cies representing 3 families). For a subset of the individuals (n = 61), 
we measured the height of leaf sampling. Small branches of canopy 
plants were collected using the French-spike tree climbing method 
(Fonderies Lacoste, Excideuil, France; de Castilho, Magnusson, 
Oliveira de Araújo, Da Costa Pereira, & De Souza 2006) or the sin-
gle-rope technique (Anderson, Koomjian, French, Altenhoff, & Luce, 
2015). When part of the foliage of an individual was exposed to di-
rect sunlight, sun leaves were collected when possible, otherwise 
shade leaves were collected. Mature leaves of understorey plants 
were collected at their canopy top. Trees were selected to span con-
trasting life histories and successional status and maximize variation 
in leaf drought tolerance (Maréchaux, Bartlett, Gaucher, Sack, & 
Chave, 2016). Trees were identified by expert taxonomists. Lianas 

were identified at the family level, and genus or species level when 
possible, with the aid of DNA barcoding. DNA was extracted from 
leaf samples and rbcL and matK plastid DNA gene regions were am-
plified using universal primers and classic protocols, and compared 
against reference databases (Hollingsworth, Graham, & Little, 2011).

2.2 | Leaf trait measurements

Leaf water potential at turgor loss point (πtlp, in MPa; Table 1) was 
measured using a previously published field protocol (Bartlett, 
Scoffoni, Ardy, et al., 2012). Briefly, a vapour pressure osmometer 
(Vapro 5520; Wescor) was used to measure the osmotic potential at 
full hydration (πo). πo was then converted into πtlp using a physically-
based calibration relationship, which was further validated at our 
site (Maréchaux et al., 2016).

Measurements of leaf area (LA, in cm−2; Table 1), leaf mass per 
area (LMA, in g/m2), and mass-based concentrations of leaf carbon 
(Cmass, in %), and nutrients (in mg/g), including nitrogen (Nmass), phos-
phorus (Pmass), potassium (Kmass), calcium (Camass), and magnesium 
(Mgmass), and carbon isotope ratio (δ13C, in ‰) were made for the 
same leaves or for leaves of the same small branch as πtlp, follow-
ing standardized protocols (Pérez-Harguindeguy et al., 2013). Thick 
woody petioles were removed and fresh leaves were scanned using 
a portable scanner (Canon LiDE 60; Canon USA). Leaf area was mea-
sured manually from the scans using the ImageJ software (http://
imagej.nih.gov/ij/). Leaves were then oven-dried at 65°C for 72 hr 
and weighed, yielding leaf dry mass, from which we calculated LMA 
(leaf dry mass per unit leaf area). Dry leaves were then ground into 
a homogeneous powder using a mixer mill (Retsch MM 200). Cmass, 
Nmass, and δ13C were determined using a continuous flow mass spec-
trometer (Isoprim 100 and Geo-multi-flow, Elementar). δ13C was cal-
culated as follows:

where Rstandard is the 13C/12C ratio measured on a V-PDB standard. 
After mineralization, Pmass, Kmass, Camass and Mgmass were measured 
by Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP–
AES, JY 180 Ultrace Jobin-Yvon). Nutrient concentrations per leaf area 
(Narea, Parea, Karea, Caarea, and Mgarea) were then obtained by multiplying 
nutrient concentrations per leaf mass by LMA.

For each sampled leaf, we estimated the time-integrated CO2 as-
similation rate per area (Aarea, in μmol m−2 s−1) and the time-integrated 
stomatal conductance to water vapour (gw, in mol m−2 s−1) using the 
following approach (Medeiros et al., 2019). A time-integrated esti-
mate of the leaf intercellular CO2 mole fraction, c

�
 (in μmol CO2 per 

mole air; μmol/mol), was estimated from leaf δ13C using the follow-
ing relationship: c

�
∕ca=−0.04×�

13C−0.55 (Cernusak et al., 2013; 
Farquhar, O'Leary, & Berry, 1982), with ca the atmospheric CO2 con-
centration taken as 390 ppm. Aarea was then estimated using the 
model of Farquhar, von Caemmerer, and Berry (1980) and constant 

�
13
C=

(

13C∕12C

Rstandard
−1

)

×100,

http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
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values following Franks, Drake, and Beerling (2009), with the max-
imum carboxylation capacity and the maximum electron transport 
rate estimated using the N and P co-limitation model proposed by 
Domingues et al. (2010; Figure 7 therein). gw was then estimated as

and Amass (in μmol g−1 s−1) was computed by dividing Aarea by LMA.

2.3 | Data analysis

All data analyses were conducted at the individual level. We 
first tested trait-by-trait correlations among the 18 leaf traits 
(Table 1) using pairwise Pearson correlation tests on the whole data-
set (n = 134 individuals). Second, to assess the dimensionality of the 
leaf trait space, we conducted a principal component analysis (PCA) 
on the standardized leaf traits for the whole dataset. We assessed 
the significance of PCA axes by comparing the axes' eigenvalues with 
expectations from a broken-stick model following Jackson (1993) 
and Peres-Neto, Jackson, and Somers (2003). Then, to test whether 
trait within-canopy plasticity or intra-specific variability can affect 
the pairwise relationships between πtlp and the other traits, we re-
stricted the dataset to tree species collected at ≥5 canopy heights 
(5 species; 28 individuals). For each trait, we used this subset to fit a 
linear model with πtlp as the dependent variable and species as factor 
and/or height of leaf sampling as an additional predictor that could 
account for contrasting trait variability across the canopy gradient.

We then tested the ability to predict πtlp from other leaf traits. 
Using multivariate regressions, we searched for the best model to 
predict πtlp from the other traits (n = 134 individuals). To avoid pre-
dictor multicollinearity, we removed traits that exhibited variation 
inflation factors (VIFs) >2.0 (Kutner, Nachtsheim, & Neter, 2004). 
The VIF of a given predictor x is given by VIF = 1/(1 − R2), where R2 is 
the determination coefficient of the regression where the predictor 
of interest x is predicted by all the other predictors. We ran the mod-
els with all possible combinations of traits as predictors and com-
puted the goodness of fit using the Akaike's Information Criterion 
corrected for small sample sizes (AICc, Burnham & Anderson, 2003). 
We estimated the relative ‘importance’ of each predictor by sum-
ming the AICc weights across all the models where the predictor 
occurs. We selected the model that minimized AICc, choosing the 
model with fewer predictors in case of a similar performance (differ-
ences in model AICc < 2). Including trait interactions and following 
the same procedure led to the same selected model. We then quan-
tified model accuracy by computing the in-sample root-mean-square 
error (RMSE), model consistency and bias by computing the slope 
and intercept of the linear regression of measured versus predicted 
πtlp values (Piñeiro, Perelman, Guerschman, & Paruelo, 2008), and 
the fraction of variance uniquely explained by each predictor using 
commonality analysis, which separates unique and shared effects of 
predictors (Ray-Mukherjee et al., 2014).

We assessed model out-sample predictive performance through 
a k-fold random cross-validation (Olden & Jackson, 2000): we ran-
domly partitioned the dataset into k equal-sized groups, and with-
held one group at a time for validation (here we used k = 5 or 10). 
This provided an out-sample RMSE, henceforth denoted RMSEk-

fold. We repeated this procedure a hundred times and reported the 
distribution of RMSEk-fold. Finally, we assessed the model transfer-
ability (also named generality or generalizability) to other datasets 
through non-random cross-validation (Wenger & Olden, 2012). 
Non-random cross-validation involves assigning data to groups 
that are ecologically, spatially or temporally distinct. In doing so, 
the heterogeneity in the dataset is taken to be a surrogate for het-
erogeneity among datasets (Wenger & Olden, 2012). We used life 
forms (lianas, trees, understorey species) and canopy strata (un-
derstorey, canopy) as alternative ways to partition the dataset, 
and this provided RMSE values (RMSEliana, RMSEtree and RMSEund.

sp, with liana, tree and understorey species withheld for valida-
tion, respectively; and RMSEund and RMSEcanopy, with canopy and 
understorey individuals withheld for validation, respectively). To 
avoid the potentially confounding effect of unequal-sized groups 
when comparing the RMSE across life forms or canopy strata, we 
randomly sampled individuals in the more numerous groups to ob-
tain equal-size groups (n = 15 individuals per group for life forms, 
and n = 42 individuals per group for canopy strata). We repeated 
this procedure a hundred times and reported the distribution of 
RMSE values for each life form and canopy strata. As the trees (in 
the life form partitioning) and the canopy individuals (in the strata 
partitioning) covered wider ranges of πtlp values than the other life 
forms or strata respectively (Figures S2–S3), we also reproduced 
this analysis by restricting the random sampling of 15 trees or 42 
canopy individuals to individuals with πtlp values within the range of 
the other life forms or strata. In doing so, we aimed to test whether 
any variability in RMSE values across life forms or strata could be 
due to contrasting πtlp ranges.

For all analyses, LMA, LA, Narea, gw, πtlp, and P, K, Ca, and Mg on 
a mass and area basis were log-transformed to meet the assumption 
of normality. For all RMSE computations, predicted πtlp values were 
back-transformed to arithmetic scale by applying the Baskerville 
correction factor to account for log-normally distributed errors 
(Baskerville, 1972). Analyses were conducted using the r software (R 
Core Team, 2018), and the ‘Hmisc’ (Harrell & Dupont, 2015), ‘smatr’ 
(Warton, Duursma, Falster, & Taskinen, 2012), ‘ade4’ (Dray & Dufour, 
2007), ‘car’ (Fox & Weisberg, 2011), and ‘MuMIn’ (Bartoń, 2015) 
packages.

3  | RESULTS

3.1 | Leaf trait correlation pattern across individuals

Across the dataset (n = 134 individuals), πtlp was statistically linked with 
leaf size and composition: leaves with more negative πtlp (higher drought 
tolerance) tended to have lower LA, Nmass, Pmass and Kmass (Table 2; 

gw=1.6×
Aarea

ca−c
�
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Figure 1). The relationships of πtlp with LA and Nmass were however 
mainly driven by trees, whereas understorey species and trees showed 
contrasting relationships between πtlp and Kmass (Figure 1; Figure S4). 
The πtlp was statistically independent of LMA, which across the dataset 
was intercorrelated with Nmass and Pmass, with low-LMA leaves tending 
to show high Nmass and Pmass (Table 2). LMA, nutrient concentrations 
per leaf area, δ13C, Cmass and Aarea were also pairwise related, with low-
LMA leaves tending to present low nutrient concentrations per leaf 
area and Aarea as well as low Cmass and δ13C (low water use efficiency). 
Camass and Mgmass were positively related, and both were negatively 
related with Cmass. Amass was positively associated with LA and N and P 
concentrations both per leaf mass and area.

In the PCA analysis, the three first components explained each 
more variance than expected from a broken-stick model, explaining 

altogether 68% of the total trait variance, and five axes were actually 
needed to account for >80% of variance (Table 3). The first axis de-
picted a dimension driven by the tight relationships among LMA and 
nutrient concentrations per leaf area, δ13C and Aarea. The second axis 
encapsulated the correlations among πtlp, LA, and mass-based nutrient 
concentrations and assimilation rate, whereas the third axis related to 
the specific coordination between Ca and Mg concentrations.

Using the subset of five tree species with at least five differ-
ent heights of leaf sampling, accounting for a species or height 
effect in the pairwise relationships between πtlp and the other 
traits did not explain additional variation, except for gw  which, 
after parsing out within- and across-species correlations, ap-
peared weakly positively related to πtlp across species (p = .02; 
Figure S5).

F I G U R E  1   Pairwise relationships between leaf water potential at turgor loss point and eleven other leaf traits across 134 tropical plants 
in an Amazonian rainforest. See Table 1 for trait abbreviations and significance. Green dots: trees (including canopy trees and saplings); red 
dots: lianas (including canopy lianas and saplings); blue dots: understorey species. Black lines are standardized major axis relationships that 
are significant across individuals and after Bonferroni correction (p < .0003; Table 2; Warton et al., 2012), dashed lines are relationships that 
are marginally significant across individuals (.0003 < p < .5). In case of significantly different slopes across life forms, coloured lines represent 
significant relationships within life forms. See Figure S4 with colours corresponding to canopy strata instead of life forms [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2 | Estimating πtlp from other leaf traits

Parea, Karea, Caarea, Mgarea, Aarea, LMA, δ13C, Pmass and Cmass were 
successively removed from the predictors to avoid too strong mul-
ticolinearity in the models (VIF > 2). The most important traits to 
predict πtlp were, in decreasing order, LA, Nmass, Kmass, Camass, Amass,  
gw, Mgmass, Narea (with estimated ‘importances’ of 1.00, 0.97, 0.81, 
0.41, 0.28, 0.28, 0.26, 0.26 respectively). Going through the same 
procedure after removing the pionner trees, which have very large 
LA, from the dataset led to similar results and the same selected 
predictors.

The selected model included LA, Nmass and Kmass, which respec-
tively and uniquely explained 9.2%, 5.0%, and 2.6% of the variation 
in πtlp. The random 5-fold and 10-fold cross-validation produced 
results close to the model in-sample performance (RMSE5-fold and 
RMSE10-fold narrowly distributed with in-sample RMSE within their 
range, Table 4; Figure S6), but the non-random cross-validation pro-
duced more variable RMSE values across life forms or canopy strata, 

with higher RMSEtree and RMSEcanopy. This variability remained when 
controlling πtlp ranges, although it was then reduced in the case of 
the life form partitioning (not shown). The selected models tended 
to underestimate leaf drought tolerance of most tolerant leaves 
(Figure 2), although the fitted line on measured versus predicted 
values was not significantly distinct from the 1:1 line in both cases 
(Figure 2; Table 4).

4  | DISCUSSION

4.1 | Weak coordination among leaf traits within a 
tropical forest community

We tested coordination among 18 leaf traits related to key functions 
and resources (Table 1) and measured on individuals of different life 
forms across the canopy of a diverse Amazonian rainforest. We first 
explored trait relationships at the scale at which they operate (the 
organ). We found trait coordination in agreement with a ‘fast-slow’ 
leaf spectrum (Reich, 2014; Table 1), consistent across life forms and 
canopy strata (Appendix S1). Leaves with lower N and P concentra-
tions per leaf mass (Nmass and Pmass) tended to have a higher leaf 
mass per area (LMA), but also a more negative leaf water potential at 
turgor loss point (πtlp). This partly extends to drought tolerance previ-
ously reported economic trait coordination across tropical tree spe-
cies (Baltzer & Thomas, 2010; Baraloto et al., 2010; Fortunel, Fine, & 
Baraloto, 2012; Patiño et al., 2012; Santiago & Wright, 2007; Zhu et 
al., 2018). This is in agreement with previous results at our site show-
ing that πtlp varied with species successional status, early succes-
sional species having a less negative πtlp than late successional ones 
(Maréchaux et al., 2016). The fact that Powell et al. (2017) found no 
relationship between πtlp and wood density is consistent with the 
fact that the wood economic spectrum and the leaf economic spec-
trum are independent in tropical rainforests (Baraloto et al., 2010), 
e.g. some light-demanding species with acquisitive leaves may have a 
relatively dense wood, and shade tolerant species with conservative 
leaves may have a relatively light wood.

However, the relationships in agreement with a leaf ‘fast-slow’ 
spectrum in our dataset left the majority of trait variance unex-
plained. No fewer than five dimensions were needed to encapsulate 
>80% of trait variation, and only three of them explained more vari-
ance than expected from a random pattern. Specifically, πtlp and LMA 
were not correlated, in agreement with previous studies (Bartlett, 
Scoffoni, & Sack, 2012; Esperón-Rodríguez et al., 2018; Maréchaux 
et al., 2015). It has been argued that the strength of leaf economics 
trait relationships depends on trait ranges, which should decrease at 
smaller spatial scales (Funk & Cornwell, 2013; Messier et al., 2017), 
and this could explain the weaker coordination among leaf traits at 
local scale than at regional or global scale. However, our sampling 
encompassed a diversity of plant species covering a large taxonomic 
breadth and leaves displaying a substantial variability in trait values. 
Overall, our dataset gathered at a single site of Amazonia spans a 
large fraction of the reported global leaf trait variation. Indeed, Nmass 

TA B L E  3   Loading scores of 18 functional traits in the PCA on 
the whole dataset (n = 134 individuals). Traits abbreviations are 
given in Table 1. Significant principal components (as determined 
by comparison with a broken stick model) and trait loadings with 
absolute values >0.5 are bolded. Since negative, πtlp values were 
converted to positive values for log transformation, but signs of πtlp 
loadings correspond to the correlation sign for untransformed data

 PC1 PC2 PC3 PC4 PC5

Eigenvalue 5.53 3.74 3.04 1.37 1.19

% of variance 
explained

30.7 20.8 16.9 7.6 6.6

Cumulative 
variance

30.7 51.5 68.4 76.0 82.6

Loadings of traits

LMA −0.88 0.46 −0.09 −0.07 0.00

LA −0.29 −0.50 −0.01 −0.28 0.30

Nmass 0.14 −0.74 0.40 0.17 0.17

Narea −0.89 −0.01 0.20 0.07 0.14

Pmass −0.02 −0.76 0.53 0.15 0.04

Parea −0.89 −0.17 0.34 0.05 0.03

Kmass 0.03 −0.45 0.50 −0.49 −0.50

Karea −0.70 0.00 0.34 −0.46 −0.42

Camass −0.17 −0.61 −0.53 0.27 −0.21

Caarea −0.66 −0.28 −0.52 0.20 −0.18

Mgmass −0.17 −0.56 −0.63 0.08 −0.13

Mgarea −0.69 −0.18 −0.58 0.03 −0.11

δ13C −0.63 0.21 0.44 0.45 −0.28

Cmass −0.29 0.52 0.55 0.15 0.21

Amass
−0.32 −0.62 0.26 0.17 0.43

Aarea
−0.95 0.24 −0.01 0.00 0.14

gw −0.39 0.05 −0.44 −0.58 0.44

πtlp −0.06 −0.60 0.18 −0.27 0.05
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and Pmass ranged from 0.75% to 3.93% and from 0.03% to 0.20%, 
respectively, LMA varied from 28 to 398 g/m2, and πtlp from −2.73 to 
−1.06 MPa in our dataset, which are substantial in comparison with 
respective 95% ranges in global plant trait databases, i.e. 0.8%–3.9% 
and 0.04%–0.35% for Nmass and Pmass, 21–222 g/m2 for LMA (Kattge 

et al., 2011), and −3.44 to −1.00 MPa for πtlp (Bartlett, Scoffoni, & 
Sack, 2012).

Alternatively, the weak coordination among traits in our dataset 
may have arisen from trait plasticity (Anderegg et al., 2018; Laughlin 
et al., 2017; Li et al., 2017; Niinemets, Keenan, & Hallik, 2015). Our 
sampling was designed to span a large range of leaf functional diver-
sity at our site, and leaves were collected from shaded understorey 
to top canopy. Environmental plasticity may thus add to genetic vari-
ation in leaf traits. Indeed, several traits, such as LMA or δ13C, varied 
with canopy leaf height (Appendix S1) as previously documented 
for these traits along the vegetation depth gradient, or equivalently 
light intensity (Domingues, Berry, Martinelli, Ometto, & Ehleringer, 
2005; Keenan & Niinemets, 2016; Niinemets et al., 2015; Ometto 
et al., 2006). In contrast, other traits such as Kmass or πtlp did not vary 
with leaf height in our dataset (Appendix S1; Maréchaux et al., 2016). 
These contrasted relationships with vertical environmental gradient 
across traits can weaken the relationships among traits in our data-
set (Messier et al., 2017). Thus, trait coordinations were stronger 
when we restricted our analysis to understorey plants (Appendix 
S1), which thrive in a more homogeneous environment. However, 
explicitly accounting for height effect or intra-specific variation in 
our dataset did not reveal any additional relationship between πtlp 
and the other traits, except for the time-integrated stomatal con-
ductance which then showed a weak positive relationship with πtlp 
across species, as expected under a ‘fast-slow’ spectrum (Table 1; 
Medeiros et al., 2019). Although a more in-depth sampling would 
allow to better disentangle any potential scale effect on trait covari-
ation in the future (Anderegg et al., 2018; Li et al., 2017; Medeiros 
et al., 2019; Messier et al., 2017), our results thus suggest that leaf 

TA B L E  4   Performance of the model selected to predict the leaf water potential at turgor loss point based on the other studied leaf traitsa

In-sample 
performance

R2 0.30

RMSE 0.28

Slope (95% confidence interval)* 1.13 (0.85, 1.40)

Intercept (95%confidence interval)* 0.22 (−0.27, 0.71)

Cross-validation Random grouping Median of RMSE5-fold (Q5, Q95)** 0.29 (0.29, 0.30)

Median of RMSE10-fold (Q5, Q95)** 0.29 (0.28, 0.29)

Non-random grouping Life forms Median of RMSEliana (Q5, Q95)*** 0.31 (0.22, 0.39)

Median of RMSEtree (Q5, Q95)*** 0.42 (0.31, 0.54)

Median of RMSEund.sp (Q5, Q95)*** 0.14 (0.10, 0.21)

Canopy strata Median of RMSEund (Q5, Q95)**** 0.25 (0.22, 0.29)

Median of RMSEcanopy (Q5, Q95)**** 0.35 (0.32, 0.40)

aSelected model: log(−πtlp) = 1.069 − 0.049 × log(LA) − 0.008 × Nmass − 0.072 × log(Kmass) 
*Slope and intercept (and their 95% confidence interval) of the linear regression between measured and predicted πtlp values as shown in Figure 2. 
**Median, and Q5 and Q95 quantiles, of the distribution of RMSE5-fold and RMSE10-fold across 100 random partitions of the dataset into five and ten 
equal-sized groups, respectively, for cross-validation. Histograms of the full distributions are provided in Figure S6. 
***Median, and Q5 and Q95 quantiles, of the distribution of RMSEliana, RMSEtree, RMSEund.sp across 100 random samplings of 15 among 70 trees, and 
15 among 49 lianas. Such procedure aimed at performing cross-validation with three equal-sized groups, one for each life form, and hence being able 
to compare the RMSE distributions across life forms. Histograms of the full distributions are provided in Figure S6. 
****Median, and Q5 and Q95 quantiles, of the distribution of RMSEund and RMSEcanopy across 100 random samplings of 42 among 92 canopy 
individuals. Such procedure aimed at performing cross-validation with two equal-sized groups, one for each canopy strata, and hence being able to 
compare the RMSE distributions across canopy strata. Histograms of the full distributions are provided in Figure S6. 

F I G U R E  2   Measured versus predicted πtlp values across the 
dataset (n = 134 individuals) for the selected model. The black 
continuous line shows the fitted linear regression, and the dotted 
line shows the 1:1 line. See Table 4 for quantifications of the 
model performance. Green dots: trees (including canopy trees and 
saplings); red dots: lianas (including canopy lianas and saplings); 
blue dots: understorey species. See Figure S7 with colours 
corresponding to canopy strata instead of life forms
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traits within a tropical forest community vary across a higher-dimen-
sional space than often assumed. As a result, care should be taken 
when interpreting variation in one trait as a proxy of individual inte-
grated ecological strategies according to spectra observed at higher 
scales.

As opposed to our sampling, previous trait sampling protocols 
often attempted to minimize trait variation due to environment and 
focused exclusively on leaves exposed to high-light conditions (Asner 
et al., 2014; Pérez-Harguindeguy et al., 2013; but see e.g. Li et al., 
2017). However, in doing so, the majority of leaves within a forest 
canopy and an important diversity of plants and species within for-
est communities are being overlooked (Keenan & Niinemets, 2016). 
If trait coordination is to be used to explore the drivers of commu-
nity assembly and ecosystem functioning, trait-based studies should 
encompass the diverse light conditions and plant life forms that 
occurred locally. More in-depth sampling of multiple trait variation 
across forest micro-environmental conditions is needed to further 
identify the multiple drivers that can entangle themselves in shaping 
observed trait covariation patterns across individuals.

4.2 | On attempting to predict leaf drought 
tolerance based on other leaf traits

Statistical models may be used to estimate some unmeasured trait 
values from measured ones, thus facilitating the parameterization 
of multiple processes for a diversity of plants in vegetation models. 
Several studies hence proposed to estimate species hydraulic traits 
such as πtlp from other traits such as LMA and wood density, based 
on relationships obtained through global meta-analyses on species 
means (Christoffersen et al., 2016; Xu et al., 2016). Intra-specific 
variability may have weakened these relationships established using 
trait values drawn from independent sources (Patiño et al., 2012). 
Although the 18 leaf traits of our dataset were measured on the 
same leaves and encompassed a range of functions, the best model 
of πtlp based on the other traits explained no more than 30% of πtlp 
variation. Additionally, out-sample predictive performance varied 
across life forms or canopy strata, suggesting a limited transferabil-
ity of such model. This may evidence the lack of direct mechanistic 
links between πtlp and the selected predictors, namely leaf area, ni-
trogen and potassium concentrations per leaf mass.

Leaf area displays a wide variation across species globally 
(Wright et al., 2017), as in our dataset gathered within a tropical 
forest community, where it was the most important predictor of 
πtlp. More drought tolerant leaves tended to be smaller than oth-
ers, a trend that remained after removing pioneer trees that had 
a particularly high leaf area. Such a relationship is in agreement 
with expectations under a ‘fast-slow’ spectrum. Displaying larger 
leaves allow a high light interception at lower twig construction 
cost, which, all else being equal, can confer a growth advantage 
(Wright, Falster, Pickup, & Westoby, 2006). At the same time, 
larger leaves typically have major veins of larger diameter (Sack 
et al., 2012), providing the water transport capacity to cool the 

leaves through transpiration and compensate for their thicker 
boundary layer when water supply is not limited (Wright et al., 
2017). This is however at the cost of leaf hydraulic safety under 
water stress, which has been found to be greater in smaller leaves 
with a higher density of smaller veins (Scoffoni, Rawls, McKown, 
Cochard, & Sack, 2011). In agreement with our findings, Medeiros 
et al. (2019) did find a positive relationship between leaf area and 
πtlp across species within a lowland dry forest. In contrast, leaf area 
and πtlp were found to be unrelated across species within a wet 
montane forest (Medeiros et al., 2019) and across species rang-
ing strongly in drought tolerance and native habitat (Scoffoni et 
al., 2011), suggesting the coordination between leaf area and πtlp 
is context-dependant. Similarly, and more generally, correlations 
between hydraulic traits, such as πtlp, and economic traits, such as 
Nmass, varied across studies, with some finding significant relation-
ships (Medeiros et al., 2019; Rosas et al., 2019; Zhu et al., 2018), 
while others finding no relationship (Bartlett, Zhang, et al., 2016; 
De Guzman, Santiago, Schnitzer, & Álvarez-Cansino, 2017; Li et al., 
2015; Medeiros et al., 2019; Rosas et al., 2019).

Potassium activates many enzymes that are essential for 
photosynthesis and respiration and is also important for stoma-
tal control (Roelfsema & Hedrich, 2005), which could explain its 
association with leaf economic traits in our dataset and in previ-
ous studies (Baraloto et al., 2010; Fyllas et al., 2009; Wright et al., 
2005). Wright et al. (2005) argued that K concentration should be 
more tightly associated with other cation concentrations such as 
Ca and Mg than with classic economic traits, since they mediate 
together many key metabolic processes within the leaf, such as 
stomatal conductance and cell wall development (Garten, 1976). 
Although Patiño et al. (2012) did find a stronger association among 
leaf cation concentrations than with economic traits for tropical 
trees, K concentration was not related to Ca or Mg concentrations 
in our dataset. Patiño et al. (2012) further hypothesized that higher 
cation concentration values would contribute to lowering leaf os-
motic potentials through accumulation of osmotically-active sol-
utes (Leigh & Wyn Jones, 1984; Olivares & Medina, 1992), and this 
would result in more negative πtlp and more drought tolerant leaves 
(Bartlett, Scoffoni, & Sack, 2012). But we here found an opposite 
positive trend between bulk K concentration per leaf mass and πtlp. 
This relationship could be indirectly driven by stomatal function, as 
K contributes to stomatal control and a less negative πtlp is associ-
ated with earlier stomatal closure (Hochberg, Rockwell, Holbrook, 
& Cochard, 2018; Martin-StPaul, Delzon, & Cochard, 2017; Meinzer 
et al., 2016), although K is involved in a range of other processes 
within the leaf. Overall, the correlation between K concentration 
and πtlp is not straightforward, varied across life forms in our data-
set (Figure 1), and was weak overall: if leaves with high K concen-
trations all tended to be at the less drought tolerant side of our 
dataset gradient, leaves with low K concentrations had πtlp values 
encompassing the whole gradient.

Leaf and wood economic spectra are typically independent in 
tropical forests (Baraloto et al., 2010; Díaz et al., 2016; Fortunel 
et al., 2012), so it can a priori make sense to use leaf traits exclusively 
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to predict another leaf trait. However, hydraulic functions may be 
more integrated through plant organs than carbon economy. Indeed, 
several studies reported a coordination of hydraulic traits across 
plant organs in some tropical forest sites (Li et al., 2018; Meinzer, 
Johnson, Lachenbruch, McCulloh, & Woodruff, 2009; Meinzer et al., 
2008; Nolf et al., 2015) and in global syntheses (Bartlett, Klein, 
Jansen, Choat, & Sack, 2016). Other hydraulic traits than πtlp are 
however difficult or long to measure in the field, or prone to arte-
fact measurements in tropical plants (Cochard et al., 2013), and thus 
remain under-documented in tropical forest communities (Bartlett, 
Zhang, et al., 2016; Choat et al., 2012). Together with our results, this 
calls for more direct measurements of πtlp and other physiological 
traits, especially in tropical forests (Blackman, 2018; Brodribb, 2017; 
Griffin-Nolan et al., 2018; Paine, Deasey, & Duthie, 2018; Yang, Cao, 
& Swenson, 2018).

5  | CONCLUSIONS

Our results illustrate that the integration of traits across function 
within plant communities can be weaker than assumed according to 
globally established trait spectra across species. Using global spectra 
to constrain plant trait combinations in vegetation models may thus 
result in overlooking some existing trait combinations and simulating 
communities that occupy a narrower trait space than actually observed 
in situ (Asner, Knapp, Anderson, Martin, & Vaughn, 2016; Laughlin, 
2014; Li et al., 2015). This may hinder models' ability to robustly sim-
ulate ecosystem functioning (Cardinale et al., 2009; Mokany et al., 
2016). In absence of clear mechanistic links, the strength of between-
trait correlations is context-dependent. Disentangling hard biophysical 
constraints from context-dependent selection in shaping empirically 
observed trait covarition is important to understand and predict com-
munity diversity and ecosystem functioning.
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