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Abstract
1. Improved estimation of climate niches is critical, given climate change. Plant ad-

aptation to climate depends on their physiological traits and their distributions, 
yet traits are rarely used to inform the estimation of species climate niches, and 
the power of a trait- based approach has been controversial, given the many eco-
logical factors and methodological issues that may result in decoupling of species' 
traits from their native climate.

2. For 107 species across six ecosystems of California, we tested the hypothesis that 
mechanistic leaf and wood traits can robustly predict the mean of diverse species' 
climate distributions, when combining methodological improvements from previ-
ous studies, including standard trait measurements and sampling plants growing 
together at few sites. Further, we introduce an approach to quantify species' trait- 
climate mismatch.

3. We demonstrate a strong power to predict species mean climate from traits. 
As hypothesized, the prediction of species mean climate is stronger (and mis-
match lower) when traits are sampled for individuals closer to species' mean 
climates.

4. Improved resolution of species' climate niches based on mechanistic traits can im-
portantly inform conservation of vulnerable species under the threat of climatic 
shifts in upcoming decades.

K E Y W O R D S
climatic niche, ecophysiology, functional traits, intraspecific variation, plant climate 
distributions, trait multifunctionality, trait- climate mismatch
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1  |  INTRODUC TION

Knowledge of plant climatic preferences (i.e. optimal conditions for 
establishment, persistence and growth) is critical for species selection 
for cultivation, for plant conservation and for predicting and mitigat-
ing global change impacts (Forestry Commission, 2020; Lancaster & 
Humphreys, 2020; Peters et al., 2020). The value of new approaches 
to improve the estimation of climate niches is shown by the use of 
genomic data to estimate climate preferences of tree ecotypes or 
crop varieties (Barney & DiTomaso, 2011; Browne et al., 2019; Sang 
et al., 2022). However, while functional trait- based approaches have 
gained strong currency in ecology (McGill et al., 2006), to our knowl-
edge, efforts to estimate species' climatic preferences have not in-
cluded traits, neglecting a potentially critical source of information 
of species' adaptation to the environment (Pearson & Dawson, 2003; 
Thuiller et al., 2004; Woodward & Williams, 1987).

Yet, a rich literature dating back to Ancient Greece (Hort, 1948) 
describes how numerous phenotypic traits related to growth, re-
production and survival (Adler et al., 2014; Lavorel & Garnier, 2002; 
Poorter et al., 2008; Violle et al., 2007) may influence plant distribu-
tions across environmental conditions (Albert, Thuiller, Yoccoz, Dou-
zet, et al., 2010) and habitat types (Grubb, 1998; Reich et al., 2003; 
Schimper, 1898; Shipley et al., 2017). Decades of theory has held 
that plants would optimize their traits to climate (Ackerly, 2003; 
Enquist et al., 2015). The association of traits with species' climate 
distributions is due to bidirectional causality (Figure 1a): a species' 
traits would depend on the climate under which it adapts and its 
community assembles, and, conversely, the climate into which a spe-
cies can recruit and regenerate will depend on its traits (Fletcher 
et al., 2018). Further, over very large spatiotemporal scales, plant 
traits can influence local and regional climate (Anderegg et al., 2019; 
Boyce et al., 2009).

However, the generality and strength of trait associations with 
climatic distributions across diverse species has been controversial 

(reviewed by Anderegg, 2023). On one hand, studies have reported 
cases in which traits were strongly adapted to climate and soil, both 
for small sets of closely related species within lineages (4– 12 spe-
cies; Cochrane et al., 2016; Fletcher et al., 2018; Ramírez- Valiente 
et al., 2020), and for the average trait values of communities across 
climatic gradients (Jager et al., 2015; Kichenin et al., 2013). These 
trends have been often applied in paleoecological studies aiming to 
retrodict past climates from community averages of fossil leaf traits 
(Greenwood, 2007; Peppe et al., 2011; Wolfe, 1978; Yang, Spicer, 
et al., 2015). On the other hand, relationships across diverse species 
of traits with climate variables have often been weak and/or highly 
variable (Costa- Saura et al., 2016; Ordoñez et al., 2009; Wright 
et al., 2005). For example, depending on the species set, the rela-
tionship of leaf nitrogen concentration with mean annual precipita-
tion has been weakly positive (Mitchell et al., 2018), weakly negative 
(Santiago et al., 2004; Swenson & Weiser, 2010) or not significant 
(Mitchell et al., 2018; Moles et al., 2014; Wright et al., 2005).

This frequent weakness of empirical trait- climate associations 
across diverse species has been ascribed to methodological issues 
and/or to a range of ecological and evolutionary factors that would 
result in a mismatch of species' traits from their natural climate dis-
tributions (Figure 1a; reviewed in Table 1). These potential sources 
of mismatch include the use of traits not directly relevant to climate 
tolerance (Brodribb, 2017; Medeiros et al., 2019), the complexity of 
the fundamental niche and its divergence from the realized niche 
(Grubb, 1977; Lee- Yaw et al., 2016; Sheth et al., 2020; Wiens, 2011), 
indirect relationships between traits and fitness (Laughlin 
et al., 2020), intraspecific trait variation (Albert, Thuiller, Yoccoz, 
Douzet, et al., 2010; Albert, Thuiller, Yoccoz, Soudant, et al., 2010; 
Siefert et al., 2015), trait multi- functionality (Sack & Buckley, 2020), 
many- to- one mapping of traits to function (Alfaro et al., 2005; An-
deregg, 2023; Falster et al., 2017; Marks & Lechowicz, 2006b) and 
nonequilibrium processes (DeAngelis & Waterhouse, 1987; Dob-
zhansky, 1950; Ohlemüller et al., 2008).

F I G U R E  1  The potential to predict plant climate distributions from functional traits. (a) Schematic for the bidirectional causal 
determination of plant traits and climatic distributions. Climate drives the adaptation of plant traits, and filters the species that assemble in 
a given location (Cornwell & Ackerly, 2009; Cornwell et al., 2006); conversely, traits determine the climatic ranges under which species can 
recruit and regenerate (Fletcher et al., 2018), and over long periods of time at landscape scale, plant traits can influence local and regional 
climates (Anderegg et al., 2019; Boyce et al., 2009; Boyce & Lee, 2010; Zarakas et al., 2020). This study tests the ability to predict climate 
from traits and the question mark represents the possible sources of decoupling explored in Table 1. (b) Multiple traits are adapted and/or 
plastically adjusted to climatic aridity, from less xeromorphic in cool and wet climates to more xeromorphic in warm and dry climates (see 
Table 2 for expectations and rationales based on theory and previously published empirical work for each trait). Indeed, traits often adapt 
in suites due to co- optimization or trade- offs, conferring ensemble advantages in given environments. For example, “economics spectrum” 
traits tend to be correlated, such that rapidly- growing species of high resource environments have higher foliar nutrient concentrations and 
photosynthetic rates but shorter lived leaves than slow- growing species of lower- resource conditions (Reich, 2014; Wright et al., 2004). 
Thus, xeromorphic species are expected to have smaller maximum heights (Hmax), and to have leaves with lower turgor loss point (πtlp; 
corresponding to more concentrated cell solutes as depicted) and lower carbon isotope discrimination (Δ13C; corresponding to conservative 
stomatal opening as depicted), that are smaller in area (LA), higher in leaf mass per area (LMA; corresponding to denser and/or thicker leaves, 
as depicted), lower in leaf nitrogen per mass (Nmass) but higher in nitrogen per area (Narea; depicted with greenness), lower in leaf carbon per 
mass (Cmass; corresponding to greater herbivory, as depicted), and higher in carbon to nitrogen ratio (C:N; reflecting greater investment in cell 
wall relative to chlorophyll as depicted) and higher in wood density (WD, corresponding to more xylem cell wall tissue per area, as depicted). 
Created with BioRe nder.com. (c) Ecosystems distributed across an aridity gradient from Baja California (Mexico) to northern California 
(US). Photographs show the study ecosystems sampled in the peak of the Spring- early Summer growing season, set in a map of the rainfall 
gradient.
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The potential mismatch between traits and climate might have de-
terred trait- based estimation of species' climate niches. As discussed 
above, a great number of previous studies have focused on trait- climate 
relationships, yet, to our knowledge, only one single previous study 
directly tested the estimation of diverse species' climate distributions 
based on traits. That study found that across trees of North America, 
seed size, maximum plant height and wood density could weakly pre-
dict the median and extreme of eight bioclimatic variables, including 
mean annual temperature, mean annual precipitation and growing de-
gree days (Stahl et al., 2014). The paucity of studies that “flip the axes” 
to plot climate variables against traits may also be attributed to a lack 
of motivation for predicting species' climate distributions from traits. 
If we already have species distribution data, why should we need to 
estimate climate preferences or climate niches from traits? However, 

as climate change hastens, and species' distributions shift, the use-
fulness of additional lines of information of species' climate niches 
becomes more evident. As shown by the use of genomic markers to 
infer climate preferences in tree ecotypes and crop varieties (Barney 
& DiTomaso, 2011; Browne et al., 2019; Sang et al., 2022), strong 
climate versus trait relationships would provide useful information 
to managers seeking to optimize outplantings and conservation area 
designation (Loiseau et al., 2020), and for the anticipation of the func-
tional responses of species distributions and ecosystem processes to 
climate change. Indeed, plant and ecosystem process models do imple-
ment constraints based on even weak known empirical trait– trait and 
trait- environment relationships, and thereby project the net effects of 
trait variation on plant performance under simulated environmental 
changes (Anderegg, 2023; Henry et al., 2019; Trugman et al., 2019).

(a)

(c)(b)
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Here, we tested the hypothesis that traits can robustly predict di-
verse species' current mean climate distributions. Across California, a 
biodiversity hotspot, we sampled a set of 107 diverse species within 
six ecosystems across a strong precipitation gradient (Figure 1c; 
see Table S1 in Supporting Information) to test trait- based predic-
tion of species' climate niches. We implemented methods designed 
to effectively resolve trait- climate relationships. First, we sampled 
a strong climate gradient, to provide power to discern trait- climate 
relationships (Mooney & Dunn, 1970). Second, by sampling species 
growing together at few sites, we reduced the effects of plasticity 
and ecotypic variation (Ackerly & Cornwell, 2007; Lepš et al., 2011; 
Pellegrini et al., 2023), which we also estimated for a set of species 
that occurred at multiple sites. Third, we focused on 10 structural, 
hydraulic and economic traits that would contribute mechanisti-
cally to tolerance of climate stress (Bartlett, Scoffoni, & Sack, 2012; 
Greenwood et al., 2017; Liang et al., 2021; Rosas et al., 2019; Row-
land et al., 2021; detailed in Figure 1b; Tables 2 and S1). Fourth, 
traits were measured using standard protocols, rather than compiled 
from databases (He et al., 2020; Li et al., 2022). Finally, we incorpo-
rated phylogenetic structure (Felsenstein, 1985; Opedal et al., 2015; 
Sanchez- Martinez et al., 2020; Skelton et al., 2021). Previous stud-
ies have incorporated these individual approaches extensively and 
rigorously, and a novel aspect of this study is our simultaneously 
applying all of them. Further, we clarified species' trait- climate mis-
match, quantified as their deviation from the all- species climate- trait 
relationship (Figure 7a; Table 3). We expected that trait- climate mis-
match would arise in part from intraspecific trait variation arising 
from plasticity and ecotypic adaptation. Thus, we hypothesized that 
trait- climate mismatch would be greater for species sampled for trait 
measurements further from the mean climate of their native ranges 
(Browne et al., 2019), that is, measured with a greater “climate sam-
pling bias” (Figure 2b; Table 3).

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

We focused on six contrasting ecosystem types representing the 
range of biogeographic conditions in the California and Desert flo-
ristic provinces (CAFP, DFP; Figure 1c; Table S1). Together, the six 
sites contain vegetation of types that represent >247,000 km2 of 
California, or 70% of its the terrestrial land area (Thorne et al., 2017). 
The sampling locations were distributed across a gradient of climatic 
aridity, including desert (Sweeney Granite Mountains Desert Re-
search Center, part of the University of California Natural Reserve 
System, UCNRS), coastal sage scrub (Centro de Investigación Cientí-
fica y de Educación Superior de Ensenada and Cañon de Doña Petra, 
Baja California), chaparral (Stunt Ranch Santa Monica Mountains Re-
serve, UCNRS), montane wet forest (Yosemite Forest Dynamics Plot, 
part of the ForestGEO network [Anderson- Teixeira et al., 2015]), 
mixed riparian woodland (Onion Creek, near the Chickering Ameri-
can River Reserve, UCNRS) and mixed conifer- broadleaf forest So
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(Angelo Coast Range Reserve, UCNRS). Permits were obtained for 
work in the UCNRS sites through direct communication with the re-
serve directors and for the Yosemite Forest Dynamics Plot through 
the United States Department of the Interior National Park Service 
(Permit #YOSE- 2017- SCI- 0009).

To test predictions of species' climate- trait relationships, we 
sampled single representative ecosystems of widespread types. 
This is a common approach in ecophysiological studies comparing 
communities (Baltzer et al., 2008; Blackman et al., 2014; Markesteijn 
et al., 2010; Zhu et al., 2013) and enables rigorous tests of species' 
trait relationships to climate. While statistical differences between 
single specific ecosystems in trait means are not necessarily general-
izable to the ecosystem type, they highlight hypotheses to be tested 
in future studies using replicate ecosystems of each type.

2.2  |  Sampling for leaf trait measurements

We selected the most abundant species for sampling at each site ac-
cording to reserve managers and forest inventories. The species in-
cluded in this study are taxonomically diverse, representing 31 plant 
families of mostly woody species (with the exception of Artemisia 
dracunculus, Epilobium canum and Mimulus aurantiacus) and includ-
ing many cases of closely related species that occur in contrasting 
environments (Extended data and Figure 2). Individual trees were 
sampled across the landscape and we avoided sampling adjacent in-
dividuals of the same species; thus, the microclimate of the exact 
sampling location differs across species and across individuals of the 
same species. Most species were sampled from a single site, but 15 
of the 107 species were among the most common in two ecosys-
tems (and one species, Eriogonum fasciculatum in three ecosystems; 
Table S12), and they were sampled in each location.

For 3– 5 individuals of 14 to 26 species per site, we collected a 
mature, sun- exposed and non- epicormic branch, with no signs of 
damage or herbivory using pole pruners or a slingshot. Branches 
were transported to the lab in dark plastic bags with moist paper and 
rehydrated overnight in a dark saturated atmosphere before har-
vesting current- year grown, fully expanded leaves for all subsequent 
analyses. For compound- leafed species, whole leaves were used.

2.3  |  Mechanistic trait measurements

Maximum tree height (Hmax) of all species was compiled from the 
Jepson Herbarium database (Jepson Flora Project, 2021). When not 
available, the Hmax was recorded as the maximum value reported 
on the Jepson eFlora website (https://ucjeps.berke ley.edu/eflor a/). 
The remaining functional traits were measured for three sun leaves 
per individual. Leaf saturated mass was measured using an analyti-
cal balance (XS205; Mettler- Toledo, OH, USA). Leaf area (LA) was 
measured using a flatbed scanner and analysed using software (Im-
ageJ; http://imagej.nih.gov/ij/). After scanning, leaves were oven- 
dried at 70° for 72 h before measurement of dry mass. Leaf mass per TA
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area (LMA) was calculated as lamina dry mass divided by LA (Pérez- 
Harguindeguy et al., 2013).

The concentrations of leaf nitrogen and carbon per mass (Nmass 
and Cmass) and the carbon isotope ratio (δ13C) were determined from 
oven- dried leaves by continuous flow dual isotope analysis (Center 
for Stable Isotope Biogeochemistry, University of California, Berke-
ley; CHNOS Elemental Analyser interfaced to an IsoPrime100 mass 
spectrometer) (Kaklamanos et al., 2020). Nmass and Cmass were con-
verted to a leaf area basis (Narea and Carea) by multiplying by LMA. 
The carbon isotope discrimination (Δ13C; in parts per thousand, 
‰) was calculated following Farquhar and Richards (Farquhar & 

Richards, 1984) as Δ
13C =

δ13Cair − δ13Cleaf

1+
δ13Cleaf

1000

, assuming δ13Cair of −8‰ 
(NOAA Global Monitoring Laboratory, 2018). The Δ13C can be influ-
enced by differences in atmospheric pressure across sites that vary 
in elevation (Hultine & Marshall, 2000; Seibt et al., 2008). Thus, we 
also calculated the difference in partial pressures of ambient (pa) and 
intercellular CO2 (pi), pa- pi, as a corrected measure of Δ13C (Hultine 
& Marshall, 2000; McDowell et al., 2010). We estimated the pa by 
multiplying its mean atmospheric concentration (ca) for the years 
of sampling (Thoning et al., 2022) by the total barometric pressure 
(Hultine & Marshall, 2000). The pi was estimated by multiplying the 
intercellular carbon concentration [ci; calculated as: ci =

(Δ13C− a) × ca

b− a
 , 

F I G U R E  2  Phylogenetic tree showing evolutionary relationships among 107 species from six California ecosystems. Symbols represent 
species of different ecosystems, with darker shades of blue representing greater water availability: mixed conifer- broadleaf forest (dark 
blue circles), mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares) 
and desert (light blue circles). Species were categorized according to the ecosystem they were sampled in (or, for species that occurred in 
multiple sites, that with climate closest to the mean aridity index, AI, of their climatic distribution).
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where a is the fractionation associated with diffusion in air (4.4‰) 
and b is the net fractionation associated with carboxylation by 
Rubisco (27‰– 29‰)] by the total barometric pressure (Farquhar 
et al., 1989; Hultine & Marshall, 2000).

We measured the wood density (WD) from 5- cm branch seg-
ments after bark removal using the water displacement method 
(Pérez- Harguindeguy et al., 2013). Branch segments were immersed 
in water and the mass of the displaced water was recorded; branch 
segments were then oven- dried at 70° for 120 h and their dry mass 
was measured. WD was calculated as the segment dry mass divided 
by the mass of displaced water. Turgor loss point (πtlp) was measured 
in two leaves from each of the 3– 5 studied individuals. We used 
vapour- pressure osmometers (Vapro 5520 and 5600, Wescor, US) to 
obtain the osmotic concentration of the leaves and published calibra-
tion equations to estimate πtlp (Bartlett, Scoffoni, Ardy, et al., 2012).

2.4  |  Environmental variables for species' 
native ranges

As in previous biogeographical trait– climate analyses, we modelled 
native climates on the basis of data for each species' natural oc-
currences from the Global Biodiversity Information Facility (GBIF; 
Baird et al., 2021; Fletcher et al., 2018; Sexton et al., 2009; Skelton 
et al., 2021) and using R software (version 3.4.4, R Core Team, 2018) 
to extract and calculate the mean, range and standard error of envi-
ronmental variables. We focused on the relationships of traits with 
the mean climate of species distributions based on the assumption 
that given gene flow occurs among populations of a given species 
across its native range, species' mean phenotypic trait values would 
relate to their mean climate (Sexton et al., 2009).

Occurrence records were downloaded using the ‘rgbif’ package 
(Chamberlain et al., 2019) and filtered to keep herbarium records 
since 1950 and remove incomplete (latitude or longitude missing) 
and duplicated records, non- natural occurrences (e.g. records from 
botanical gardens or planted urban trees; Chamberlain et al., 2019; 
Riordan et al., 2015; see Extended data for download links and ref-
erences for each species' occurrence records). We restricted the ex-
tent of observations to United States, Mexico and Canada unless the 
species had a known worldwide distribution. The resulting observa-
tions were manually screened for quality issues and outliers before 
the calculation of species- level descriptive statistics. We calculated 
species climatic envelopes using species occurrence points and not 
maps of distribution ranges because we were interested in the re-
lationship between species' traits and climate variables, whereas 
range maps are based on ecological niche models (Harrison, 1997; 
Peterson, 1999) (ENMs) that are partially calculated from environ-
mental variables and thus could potentially introduce bias in our cli-
mate analyses (Šímová et al., 2018).

We extracted 30 environmental variables from open- access 
raster layers, relating to air temperature (WorldClim, CRU; Hi-
jmans et al., 2005), precipitation (WorldClim; Hijmans et al., 2005), 
aridity (CGIAR- CSI, NCAR- UCAR; Zomer et al., 2008) and soil 

characteristics (ISRIC Soilgrids; Hengl et al., 2017; see Table S3 
for detailed description, download links and references for each 
variable). The raster layers with the same resolution were stacked 
using the stack function from the ‘raster’ package (Hijmans & van 
Etten, 2012) and the environmental variables for each occurrence 
record were extracted using the extract function from the ‘dismo’ 
package (Hijmans et al., 2011). Due to their coarse resolution, these 
environmental variables are effective in characterizing large scale 
patterns but do not reflect differences in microclimate, that is tem-
perature, water and nutrient availability, irradiance and soil com-
position (Perez & Feeley, 2021). In the main text, we focus on the 
relationships between traits and the mean value of nine key envi-
ronmental variables: mean annual temperature, MAT; maximum tem-
perature of the warmest month, Tmax; minimum temperature of the 
coldest month, Tmin; growing degree- days above 5°C, GDD; mean 
annual precipitation, MAP; precipitation of the wettest month, Pwet; 
precipitation of the driest month, Pdry; aridity index, AI; and soil pH, 
SoilpH. The relationships between traits and the mean and the range 
(max- min) of the remaining 21 environmental variables can be found 
in the supplemental tables. The complete dataset with species-  and 
site- level environmental variables is available in the Extended data.

2.5  |  Phylogenetic reconstruction

Sequences for all 107 species were automatically downloaded from 
GenBank and aligned with MAFFT (multiple alignment using fast 
Fourier transform; Matrix Maker; github.com/wf8/matri xmaker) 
(Freyman & Thornhill, 2016). We focused on eight genes, ITS, matK, 
MatR, ndhF, rbcl, trnL- trnF, 18S and atpB. Each species was repre-
sented with at least one up to seven gene accessions, with an av-
erage of 3.3 genes. The genes were then concatenated for each 
species, and a maximum likelihood analysis of the phylogenetic rela-
tionships was conducted using a general time reversible (GTR) model 
of substitution (SeaView version 4; Gouy et al., 2010). To calibrate 
branch lengths, we used the chronos function in the R package ‘ape’ 
(Paradis & Schliep, 2019). The species relationships were assessed 
by comparing the angiosperm phylogeny group phylogeny with 
that reconstructed in this paper; all relationships were consistent 
between the two, with three exceptions in nodes with low support 
(Stevens, 2019). The output of species branch lengths was utilized to 
incorporate species relatedness into downstream analyses.

2.6  |  Statistical analyses

All statistical analyses and plots were performed in R software (ver-
sions 3.4.4; R Core Team, 2018 and 4.0.2 R Core Team, 2020) and 
packages available from the CRAN platform. To test for differences 
among ecosystems in the mean climate of their constituent species' 
distributions, we performed one- way ANOVAs using the aov func-
tion from the ‘stats’ package followed by a Tukey test at 5% prob-
ability using TuckeyC function and package (Sokal & Rohlf, 2012; 
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Tables S4 and S8). To test for differences in functional traits among 
ecosystems, we performed nested ANOVAs using the aov function, 
with species nested within ecosystems, followed by a Tukey test 
at 5% probability (Sokal & Rohlf, 2012). Trait and climate variables 
that did not fulfil the normality and homoscedasticity assumptions 
were log10- transformed prior to analyses. Variables that included 
both negative and positive numbers were incremented by a constant 
equal to the lowest species mean + 1 before log- transformation, 
such that 1 was the lowest value for that variable (Tables S4 and S9). 
For πtlp, which is negative, we multiplied the values by −1 prior to 
log- transformation.

To summarize the variation in functional traits and the mean 
climate of the range of distribution of species, we performed prin-
cipal component analyses (PCAs) on species means of eight nonre-
dundant functional traits and climate variables using the prcomp 
function in the ‘stats’ package. We included eight of the 10 study 
traits to avoid strong collinearity; given that we included Nmass, we 
did not include Narea and C:N in any of the multivariate analyses. All 
variables were log- scaled prior to analyses. We extracted the spe-
cies scores (scaled to range from −1 to 1) of PC axes 1 and 2, and 
used them to summarize trait and climate main axes of variation in 
subsequent analyses.

To test for relationships between single traits and environmental 
variables while accounting for species relatedness, we performed 
phylogenetic generalized least- squares analyses (PGLS; Felsen-
stein, 1985; Harmon, 2019) where the environmental parameters 
were the dependent variables and the 10 measured traits were the 
independent variables, using the pgls function from the ‘caper’ pack-
age (Orme et al., 2018) with lambda (λ; metric of phylogenetic signal 
that quantifies the influence of shared history on trait distributions 
and ranges from 0 [phylogenetic independence] to 1 [species' traits 
covary proportionally to their shared evolutionary history]) opti-
mized using maximum likelihood (Freckleton et al., 2002). Cross- 
species phylogenetic analyses required single values for each 
species, so for the 15 species collected at more than one site we 
calculated the mean trait values across the sites and assigned those 
species to the site most similar in aridity index (AI) to the mean of 
that species' range (Extended data).

Given the use of multiple significance tests of trait- climate cor-
relations, we assessed the significance of the overall correlative pat-
tern by applying a proportion test (after Baird et al., 2021). We thus 
calculated the number of significant correlations relative to the 132 
correlations we hypothesized (Table 2 and citations therein) among, 
on one hand, the 10 functional traits plus the first two PCA axes for 
traits (Traits- PC1 and 2), and on the other hand, the nine climate 
variables included in the PCA analysis plus the first two PCA axes for 
climate variables (Climate- PC1 and 2). Then, we used the function 
prop.test in the ‘stats’ package to test if the proportion of signifi-
cant correlations was greater than that expected from chance (0.05) 
(Table S10).

To highlight the trait variation that arose across the sampled eco-
systems, in addition to cross species analyses, we also present trait- 
environment relationships averaged for species within ecosystems, 

using the across- species mean trait values and the mean of the mean 
climate of their constituent species' distributions. We used Pear-
son's correlations on untransformed and log- transformed data, to 
test for either approximately linear or non- linear (i.e. approximate 
power- law) relationships respectively and report the higher correla-
tion value in the text (Table S7).

We tested the power of multiple traits to predict the mean en-
vironment of the distribution of each species using PGLS to predict 
Climate- PC1 from eight traits not redundant in their calculation 
(all but Narea and C:N, as explained above). To select the trait- based 
models that best predicted the climate variables, we tested the com-
bination of all possible predictor variables and compared models 
using AICc (code available on GitHub). The comparison of models 
by AICc enables maximum likelihood selection of the model and 
its parameter values without bias by the number of parameters or 
models (penalizing models with more parameters; Burnham & An-
derson, 2010). To determine the percentage contribution of each 
trait to the prediction of climate variables, we performed a hierar-
chical partitioning analysis using the ‘hier.part’ package (Chevan & 
Sutherland, 1991; Walsh & Mac Nally, 2013). In addition to testing 
models to predict Climate- PC1, we also tested models to predict in-
dividual widely used environmental variables from traits: maximum 
temperature of the warmest month (Tmax), mean annual precipitation 
(MAP), aridity index (AI) and soil pH (SoilpH; high SoilpH is associated 
with low concentration of exchangeable soil phosphate and iron; 
Tyler, 1996; Table S11). Given that Δ13C may be influenced by site 
elevation, and also may include a potentially more direct influence of 
environmental factors in its determination than other traits, such as 
vapour pressure deficit (VPD) and temperature (Seibt et al., 2008), 
we also conducted this analysis with pa- pi (which corrects Δ13C for 
elevation), and also without including this trait (Table S11).

To discern the power of incorporating phylogeny in our analyses 
to predict species' mean climate, we performed multiple regression 
following the same workflow as in the evolutionary analysis but 
using ordinary least squares regression instead of PGLS. We com-
pare the models using AIC, R2 and root mean squared error (RMSE; 
Table S2).

In addition to multiple regression analyses, we used principal 
component analyses to quantify the overarching power to predict 
species' mean climate variables from traits, and to estimate each 
species' “trait- climate mismatch”. We regressed species' Traits- PC1 
scores against their Climate- PC1 scores using PGLS and species' re-
siduals from this regression were considered as their trait- climate 
mismatch (Gelman & Hill, 2007), that is the amount of trait variation 
not explained by mean climate (Table 3). Purposefully, the definition 
of trait- climate mismatch as residuals from the trait versus climate 
relationship renders trait- climate mismatch statistically independent 
of environmental variables and of the Climate- PC1. This approach 
enabled the subsequent testing of the relationship of trait- climate 
mismatch with climate variables, while avoiding the circularity that 
would have arisen if trait- climate mismatch had been defined as the 
residuals of climate versus traits. To simplify presentation, as Cli-
mate- PC1 values were negatively related to aridity and Traits- PC1 
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values positively related to adaptation to aridity, we multiplied Cli-
mate- PC1 scores by −1 such that the relationship between the axes 
was positive (Table S6). Notably, in our definition of trait- climate 
mismatch, a higher value does not represent greater mis- adaptation 
to climate; rather, a higher trait- climate mismatch value represents 
greater adaptation of traits to aridity than would be expected from 
the all- species trait- climate relationship, and a lesser value rep-
resents a lesser adaptation of traits to aridity, though not necessarily 
to other environmental variables.

Given that species' traits may adjust plastically or genetically 
(ecotypically) in relation to climate, we conducted two analyses to 
test the potential importance of intraspecific trait variation across 
sites as an influence on trait- based climate prediction. First, for 
each of the 15 study species that occurred at more than one site, 
we applied a commonly used phenotypic plasticity index (Valladares 
et al., 2000; Table S12) to calculate indices of intraspecific trait vari-
ation (ITV) and intraspecific climate variation (ICV) for each trait and 
climate variable (Table 3) as (max−min)

max
, where max and min are the 

maximum and minimum values of a trait or climate variable measured 
from individuals of a given species across sites and tested relation-
ships across species between intraspecific trait and climate variation 
indices using PGLS. Second, we tested whether species' trait- climate 
mismatch may depend on a climate sampling bias, calculated as the 
difference in a given climate variable between the sampling location 
and the mean of the species' distribution (after the “climate transfer 
distance” of Browne et al., 2019), such that a species sampled from 

a more arid location than the mean of its distribution would have a 
higher climate sampling bias, whereas species sampled from a less 
arid location would have a lower climate sampling bias. We tested 
associations across species of the trait- climate mismatch with the 
climate transfer distance with respect to two climate variables, max-
imum temperature of the warmest month, Tmax, and mean annual 
precipitation, MAP, using PGLS.

3  |  RESULTS

3.1  |  Functional trait variation in relation to climate

Species differed strongly within and across the six California ecosys-
tems in the 10 functional traits (Figure 3; Table S4), with 15%– 40% 
of variation in given traits explained by the ecosystem type, 42%– 
79% by species and 2%– 18% intraspecifically (nested ANOVAs; 
Table S4). All 10 traits varied across ecosystems with climatic aridity 
as hypothesized (Figures 1b and 3; Table 2): species of more arid eco-
systems had lower water potential at turgor loss point (πtlp), lower 
carbon isotope discrimination (Δ13C), smaller individual leaf area 
(LA), and maximum height (Hmax), and higher nitrogen concentration 
per leaf area (Narea), leaf mass per area (LMA), carbon- to- nitrogen 
ratio (C:N) and wood density (WD), whereas species of wetter eco-
systems had opposite tendencies for trait values, associated with 
competitive resource use and investment in anti- herbivory defence, 

F I G U R E  3  Variation across 
ecosystems, from wettest to driest, in 
functional traits. Symbols represent 
species of different ecosystems, with 
darker shades of blue representing greater 
water availability: mixed conifer- broadleaf 
forest (dark blue circles), mixed riparian 
woodland (triangles), montane wet forest 
(inverted triangles), chaparral (diamonds), 
coastal sage scrub (squares), desert (light 
blue circles). (a) maximum plant height 
(Hmax), (b) absolute turgor loss point (πtlp), 
(c) carbon isotope discrimination (Δ13C), 
(d) leaf area (LA), (e) nitrogen per mass 
(Nmass), (f) carbon per mass (Cmass), (g) 
leaf mass per area (LMA), (h) carbon to 
nitrogen ratio (C:N) and (i) wood density 
(WD). All nine traits and Narea were 
significantly different across ecosystems 
(Nested ANOVAs; Table S4; p < 0.001).
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including higher nitrogen and carbon concentrations per leaf mass 
(Nmass and Cmass) (Figure 3; Table S4).

The strong importance of climatic aridity was also highlighted 
by principal component analyses of climate variables and trait val-
ues (Climate- PCA and Traits- PCA, for nine environmental variables 
and eight traits respectively). The first two Climate- PCA axes (Cli-
mate- PC1 and PC2; Figure 4a; Table S5) accounted for 79.1% and 
15.5% of variation respectively. Climate- PC1 corresponded to cli-
matic warmth and aridity, including higher mean annual temperature 
(MAT), maximum temperature of the warmest month (Tmax), lower 
annual precipitation (MAP) and aridity index (AI), and to more basic 
soil (SoilpH). Climate- PC2 corresponded to the minimum temperature 
of the coldest month (Tmin). The Traits- PCA also showed the strong 
correspondence of traits with adaptation to aridity across species. 
Traits- PC1 and PC2 accounted for 37.2% and 23.8% of variation, 
respectively: high Traits- PC1 values corresponded to low πtlp, small 
LA, high LMA, high WD, and low Nmass and high Traits- PC2 values to 
lower Hmax and Cmass (Figure 4b; Table S6).

Across species, Traits- PC1 was correlated with Climate- PC1 
(PGLS; r = 0.63; p < 0.001; Table S9), and Traits- PC2 with both 
Climate- PC1 and 2 (r = 0.45 and −0.44, respectively; p < 0.001; 
Table S9). Species' Climate- PC1 scores were correlated with πtlp  
(Figure 5a), LMA, Narea, C:N, WD, Δ13C, LA, Nmass and Cmass (|r| = 0.22– 
0.56; p < 0.05; Figure S2; Table S9), and species' Climate- PC2 scores 
with Traits- PC2, Δ13C, C:N, Hmax, Nmass and Narea (|r| = 0.28– 0.44; 
p < 0.05; Table S9; |r| is presented to highlight relationship strengths, 
whether relationships are positive or negative, as indicated in the 
Figures and Tables). We found support for 103/132 (78%) of our 

hypothesized trait- environmental variable relationships (Table S10) 
a proportion far higher than our null hypothesis of chance (0.05; 
p = 1.05E- 10; proportion test). Indeed, all nine of the climate vari-
ables representing the mean of species ranges were correlated with 
species' values for one or more individual traits (|r| = 0.20– 0.70; 
p < 0.05; Tables S9 and S10). Across the six ecosystems, means for 
four traits were correlated with Climate- PC1, that is, πtlp (Figure 5a- 
inset), Hmax, WD and Cmass (|r| = 0.83– 0.94; p < 0.05; Figure S2- insets; 
Table S7).

3.2  |  Functional trait- based prediction of species' 
native climate

Our analyses demonstrated the power of mechanistic traits to 
predict variables representing the mean climate of species' ranges. 
Regression models predicted Climate- PC1 from traits; six of the 
eight nonredundant traits included in the analysis were selected 
as best predictors, in order of importance according to hierarchi-
cal partitioning: Δ13C, LMA, πtlp, Cmass, WD and Nmass (adjusted 
R2 = 0.59; p < 0.001; Figure 5d; Table S11). For the six ecosystems, 
the across- species average values of observed Climate- PC1 scores 
were strongly predicted by the mean of Climate- PC1 scores es-
timated for each species from multivariate regression (R2 = 0.87; 
p < 0.01; Figure 5d- inset; Table S7). Multivariate regression models 
also predicted individual environmental variables from functional 
traits, with Δ13C, LMA and Cmass selected in the best- fit models for 
Tmax, MAP, AI and SoilpH (R2 = 0.48– 0.66; p < 0.001; Figure 5b,c,e– f; 

F I G U R E  4  Principal component analyses (PCA) of (a) mean climate variables for species' ranges of distribution (Table S5) and (b) a set of 
non- redundant species traits for 107 species from six California ecosystems (Table S6). The climate variables included were mean annual 
temperature, MAT, maximum temperature of the warmest month, Tmax, minimum temperature of the coldest month, Tmin, mean annual 
precipitation, MAP, precipitation of the wettest month, Pwet, precipitation of the dryest month, Pdry, aridity index, AI, growing degree- days, 
GDD, and soil pH, SoilpH. For all tests of relationships with “Climate- PC1” we multiplied by “−1” so the relationship between Climate- PC1 and 
Traits- PC1 is positive, for clarity, as these reflected climatic aridity and adaptation to aridity respectively. The traits included were maximum 
adult height, Hmax, turgor loss point, πtlp (multiplied by “−1” prior to PCA), carbon isotope discrimination, Δ13C, leaf area, LA, leaf mass per 
area, LMA, foliar nitrogen and carbon concentrations, Nmass and Cmass, and wood density (WD). Symbols represent species of different 
ecosystems, with darker shades of blue representing greater water availability: mixed conifer- broadleaf forest (dark blue circles), mixed 
riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares), desert (light blue 
circles).
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Table S11). As Δ13C may be influenced by site elevation, and also 
may include a potentially more direct influence of environmental 
factors in its determination than other traits, such as vapour pres-
sure deficit (VPD) and temperature (Seibt et al., 2008), we also 
conducted this analysis with pa- pi (which corrects Δ13C for eleva-
tion and temperature), and also without including this trait. Nota-
bly, pa- pi was highly correlated with Δ13C across species (r = 0.96; 
p < 0.001), and Δ13C was not correlated with VPD or temperature 
across species or sites (Figure S1). Further, conducting this analy-
sis substituting pa- pi for Δ13C, or removing Δ13C altogether yielded 
similar results in the predictive models (Table S11), so we focus on 
Δ13C in the main text.

Our test of the value of an explicit evolutionary analysis incor-
porating phylogeny relative to ahistoric analysis for the multiple re-
gression prediction of Climate- PC1 (i.e. comparing PGLS with OLS) 
showed that the evolutionary analysis was selected with higher 

likelihood (AIC lower by >2), though with similar predictive power 
with respect to R2 and RMSE as the PGLS approach (Table S2).

3.3  |  Quantifying species trait- climate 
mismatch and its relationship to intra- specific 
trait variation

We estimated species' trait- climate mismatch as residuals from the 
relationship of Trait- PC1 to Climate- PC1 (Figure 7a). The species 
with highest trait- climate mismatch (indicating traits more xeromor-
phic than expected based on its mean climate) included especially 
those with high LMA and low πtlp, such as conifers (Abies concolor, A. 
magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus albicau-
lis, P. contorta, P. lambertiana) and some of the most drought- tolerant 
species across ecosystems (Adenostoma fasciculatum, Arctostaphylos 

F I G U R E  5  The prediction of plant climate distribution means from functional traits for 107 species from six California ecosystems 
demonstrated using a phylogenetic multivariate approach. (a) Illustration of an across species climate- trait relationship: the first axis of a 
principal components analysis of species' climate variables (Climate- PC1) plotted against turgor loss point, πtlp (main panel; phylogenetic 
generalized least squares; λ = 0.83; Table S9) and ecosystems (inset; ordinary least squares; Table S7). (b– f) Relationships between observed 
climate variables and the values predicted by multiple functional traits (PGLS; λ ranged from 0.70 to 0.80; Table S11); (b) maximum 
temperature of the warmest month, Tmax, (c) mean annual precipitation, MAP, (d) scores of Climate- PC1, (e) aridity index, AI, and (f) soil pH, 
SoilpH. Main plots show relationships for species (phylogenetic generalized least squares, R2

sp), and inset plots show the relationships among 
ecosystem mean values (ordinary least squares, R2

eco), with the dashed lines representing the 1:1 relationship and dotted red lines the 
confidence intervals. *p < 0.05; **p < 0.01; ***p < 0.001.
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nevadensis, Arctostaphylos patula, Larrea tridentata and Quercus vac-
ciniifolia; Extended data).

Our analyses indicated that on average, species were sampled 
in ecosystems in locations representative of their climate distribu-
tion. Thus, the climate variables for the ecosystem location were 
correlated with the mean climate variables of their component spe-
cies for Tmax, MAP, AI, SoilpH and Climate- PC1 scores (|r| = 0.85– 0.96; 
p < 0.05; Figure S3; Table S7). Yet, our data supported the hypothe-
sis that the difference between the climate of the sampling location 
and that of the species' mean distribution influenced trait- climate 

mismatch, due to plastic or ecotypic trait adjustment to climate in 
the sampled ecosystem (Table 3). First, for the 15 species that oc-
curred in more than one ecosystem across species, intraspecific trait 
variation (ITV) was associated with the intraspecific climate variation 
index (ICV) for multiple traits; ITV in πtlp was positively correlated 
with ICV in AI, MAP and Pwet; ITV in Nmass and N:C were positively 
correlated with ICV in GDD and/or Tmin; and ITV in Cmass was pos-
itively correlated with ICV in with SoilpH (|r| = 0.59– 0.62; p < 0.05; 
Figure 6; Tables S12 and 13). Second, across all 107 species, trait- 
climate mismatch was positively correlated with the climate sam-
pling bias, that is, the difference in climate between the species' 
sampling site and the mean climate of its native range (|r| = 0.21– 
0.24 for Tmax and MAP; p < 0.05; Figure 7b,c; Table S9). Thus, species 
sampled at sites more arid than the mean of their range had traits 
more xeromorphic than expected from the mean climate of their dis-
tribution (Figure 7b,c).

4  |  DISCUSSION

Our findings demonstrate the strong power of traits for estimation of 
species and ecosystem climate distributions and support theory for 
the optimization of traits versus climate (Parkhurst & Loucks, 1972; 
Sack & Buckley, 2020; Xu et al., 2021). Thus, the striking quantita-
tive association of mechanistic traits with climate variables evi-
dently arose from millennia of evolution and community assembly 
that matched plant physiology to climate across California (Corn-
well & Ackerly, 2009; Cornwell et al., 2006; Mitchell et al., 2018), 
with species tracking climate as it changed (Wang et al., 2023), and 
with a potential further reinforcement arising over long time scales 

F I G U R E  6  The influence of plasticity on functional traits for 
15 species that were sampled from more than one California 
ecosystem. For the 15 species (Table S12), the relationship of 
the intraspecific variation in the osmotic potential at turgor loss, 
ITVπtlp, with (a) the intraspecific variation in aridity, ICVAI, and (b) 
mean annual precipitation, ICVMAP (phylogenetic generalized least 
squares; Table S13). Similar relationships were found for other traits 
and climate variables (Table S13). *p < 0.05.
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sp; Table S9) and ecosystems (inset; ordinary least squares, R2
eco; Table S7). Thus, the residuals from this 

relationship represent the trait- climate mismatch where a species with higher values possesses traits more xeromorphic than expected from 
the all- species relationship. Trait- climate mismatch represents a species' trait divergence from the mean association with climate across 
species and may entail either a stronger or lesser adaptation to climate extremes, and therefore may pre- adapt a species, or render it more 
vulnerable to climate change. (b, c) Testing hypotheses for influences on trait- climate mismatch arising from intra- specific trait variation. 
Relationship between the trait- climate mismatch and species' climate sampling bias in terms of (b) maximum temperature of the warmest 
month, Tmax, and (c) mean annual precipitation, MAP (PGLS; λ = 0.86 and 0.89, respectively; Table S9). *p < 0.05; **p < 0.01; ***p < 0.001.

1.0 0.0 0.5 1.0

1.
0

0.
0

0.
5

1.
0

Climate PC1

T
ra

its
P

C
1

R2
sp � 0.39***

R2
eco � 0.73*

0.5 0.5

0.
4

0.
2

-

+

1:1

10 0 5 10

1.
0

0.
5

0.
0

0.
5

1.
0

csbT max

tc
m

rsp � 0.20* d

1000 500 0 500

1.
0

0.
5

0.
0

0.
5

1.
0

csbMAP �mm�

rsp � 0.24* e

Tr
ai

t-
cl

im
at

e 
m

is
m

at
ch

Climate sampling bias of Tmax Climate sampling bias of MAP

(a) (b) (c)

 13652435, 2023, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14422 by U

niversity O
f C

alifornia, L
os, W

iley O
nline L

ibrary on [08/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2800  |   Functional Ecology FUNCTIONAL ECOLOGY

when ecosystems can influence their local and regional climate via 
the water cycle, soil accumulation and other processes (Bounoua 
et al., 2010; Boyce et al., 2009; Boyce & Lee, 2010; Crous, 2019; 
Wang et al., 2009).

The successful prediction of species' mean climate from mech-
anistic traits provides an optimistic counterpoint to the generally 
weak trends shown by previous studies of trait- climate relationships 
for diverse species at large geographical scales, especially when 
based on single traits compiled from large databases (e.g. Moles 
et al., 2014; Šímová et al., 2018; Taugourdeau et al., 2014; van der 
Plas et al., 2020; Vesk et al., 2020). Across this gradient of aridity, 
Δ13C, LMA and πtlp were the traits that individually best predicted 
Climate- PC1 but with limited power individually (R2 = 0.25– 0.31; 
p < 0.001; Table S9). Using multivariate models, the variation in Cli-
mate- PC1 explained by traits doubled (Figure 5; Table S11). Across 
California, species with high Climate- PC1 scores, which are adapted 
to drier warmer climates and more alkaline soils, have thicker and 
denser leaves, more negative turgor loss point and lower carbon dis-
crimination rates, which confer higher tolerance to aridity by allow-
ing the plants to continue photosynthesis when water availability is 
low and/or contributing to fast growth when water is available (Bart-
lett, Scoffoni, & Sack, 2012; Fletcher et al., 2018; Kramp et al., 2022).

The power of our approach to resolve relationships despite the 
many potential sources for mismatch of species' traits from their 
current climate distributions (Table 1) can be attributed to the 
methodology described here, including the quantification of rela-
tionships along a strong regional biogeographic gradient, and the 
measurement in standard ways of traits with mechanistic signifi-
cance across sites relatively close to the mean of their climate dis-
tribution. The particular importance of sampling species for traits 
near the mean of their climate distribution was highlighted by our 
analyses showing that intra- specific variation arising from plastic 
and ecotypic adjustment led to an association across species of 
trait- climate mismatch with climate sampling bias (Tables S9 and 
S13). Our ITV and climate mismatch analysis helped to reveal 
the role that within- species variation plays in complicating trait- 
climate relationships. Unsurprisingly, larger ITV arose for species 
sampled across larger climate gradients (Figure 6) and a significant 
fraction of the residual variation in trait- climate space is explained 
by how far outside the niche center traits were measured. These 
findings point to the important influence of ITV on trait- climate 
relationships.

Notably, we focused on 10 traits with mechanistic importance 
in the climate- dependency of vital rates and community assembly 
(Adler et al., 2014; Anderegg, 2023; Kraft et al., 2008, 2015; McGill 
et al., 2006; Medeiros et al., 2019; Poorter et al., 2008; Sobral, 2021; 
Uriarte et al., 2016; Violle et al., 2007, 2011; Volaire et al., 2020). 
These traits include so- called ‘hard’ physiological traits (e.g. πtlp 
and Δ13C) which may be more directly mechanistically linked with 
plant adaptation to withstand aridity, as well as ‘soft’ morpholog-
ical traits that may contribute indirectly, or as part of a correlated 
complex of traits (e.g. Hmax, leaf size and LMA). The inclusion of 
additional traits would likely improve predictive power, including 

hydraulic vulnerability, stomatal and vein traits, additional nutrient 
concentrations, photosynthetic responses, and, in addition, life his-
tory traits such as seed size, especially if other life forms including 
non- woody species are considered. We found that the inclusion of 
phylogeny strongly increased the likelihood (and reduced the AICc) 
of the model, but did not add additional predictive power relative 
to an ahistorical model based on our analysis of the R2 and RMSE 
of multiple regression models (Table S2). We expect that including 
more species that would be closely- related within given lineages 
with well- resolved phylogenies (Dunbar- Co et al., 2009; Fletcher 
et al., 2018; Scoffoni et al., 2016) may increase the predictive value 
of phylogeny in trait- based climate prediction relative to in our study 
design, which focused on diverse species and a broad phylogeny (Ed-
wards, 2006; Schmerler et al., 2012). Predictive power may also be 
gained by considering trait variation within and among populations 
of given species, and finer scale climate data, including microclimate, 
reflecting topography and vegetation cover, and, potentially data on 
biotic stressors, such as the presence of specific herbivores (Opedal 
et al., 2015; Perez & Feeley, 2021). Addressing all the other potential 
factors contributing to trait climate mismatch (Table 1) is an import-
ant avenue for future studies.

The power of traits to predict species' mean climate was sub-
stantial relative to using sampling site as a predictor; the R2 of the 
multiple regression incorporating phylogeny was 0.58, and the 
variation in Climate- PC1 explained by site in a one- way ANOVA 
was 78% (Tables S2 and S4). Given that site climate was highly cor-
related with the mean climate of species' distributions averaged for 
sites (Figure S3), the finding that trait- based prediction can achieve 
0.58/0.78 = 75% of the power to explain variation relative to site is 
another confirmation of the promise of the trait- based approach to 
predict species' climate niches.

The feasibility of predicting climate preference from traits points 
to avenues not only for improved understanding of the physiolog-
ical basis for climate niches, but also multiple critical applications 
in improving and validating models for species persistence and 
performance with respect to climate, and for the management of 
threatened species. First, this study demonstrates that traits can 
provide an important stream of quantitative information useful for 
predicting species' climate niches. Many recent analyses, includ-
ing ours, estimated species' climate distributions based on collec-
tion databases and modelled climate, resulting in uncertainty in 
the estimated climate mean, as collections are not proportional to 
abundance with respect to climate, and rare species may not exist 
in their most preferred climates. By providing another line of evi-
dence for climate adaptation, trait- based approaches can provide a 
critical cross- validation. Important avenues for future study include 
the analysis of whether traits can powerfully predict not only cli-
mate means, as shown here, but also species' climate niche breadths 
(ranges) and climate limits; studies of some traits indicate a stron-
ger relationship with climate limits, representing thresholds for per-
sistence (Brodribb et al., 2014; Skelton et al., 2021; Stahl et al., 2014). 
Further, future studies are needed to determine whether species' 
abundances in a given climate can be predicted from traits, beyond 
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our analysis of the mean climate of species' occurrences. Second, 
managers may improve their prioritization of threatened species for 
conservation based on consideration of traits (Schönbeck et al., in 
review; Foden et al., 2013; Loiseau et al., 2020), that is, if the traits 
of the threatened species indicate that its mismatch from its optimal 
climate is escalating. Third, trait- based climate niches can be used 
to improve the designation of ex- situ conservation sites, matching 
the most vulnerable species to their climate niches and facilitating 
“assisted migration”, extending recent taxonomic, phylogenetic and 
genomic approaches to mitigate impacts of climate change (Browne 
et al., 2019; Brum et al., 2017; Chen et al., 2022; Csilléry et al., 2020; 
Merchant et al., 2023). Fourth, the repeated quantification of trait- 
climate mismatch may improve assessments of climate vulnerability, 
with increasing trait- climate mismatch suggesting a too slow shift in 
a species' distribution due to migration and evolution relative to the 
rapidity of climate change (Aitken et al., 2008; Keenan, 2015). Tests 
of this idea may be developed using species' abundances based on 
herbaria or botanical surveys. Fifth, trait- based estimation of spe-
cies' climatic ranges can improve process- based modelling of plant 
growth in given resource conditions (Buckley & Roberts, 2006; 
Marks & Lechowicz, 2006a, 2006b; Trugman et al., 2019). Finally, 
trait- based climate niches can improve the representation of spe-
cies' distributions in dynamic global vegetation models (DGVMs) 
used to predict climate change impacts on species and biomes, and 
their feedbacks on the climate system, an urgent priority in global 
change research (Konings et al., 2021; van Bodegom et al., 2014; 
Yang et al., 2019; Yang, Zhu, et al., 2015). Overall, our findings indi-
cate that this approach is worthy of testing in other ecosystems and 
with a larger set of traits, to determine the generality and context- 
dependence of trait- based estimation of species' climate niches.
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