
Journal of Theoretical Biology 224 (2003) 107–114

Measuring mast seeding behavior: relationships among population
variation, individual variation and synchrony

John P. Buonaccorsia,*, Joseph Elkintonb, Walt Koenigc, Richard P. Duncand,
Dave Kellye, Victoria Sorkf,1

aDepartment of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
bDepartment of Entomology and Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA

cHastings Reservation, University of California, Berkeley, Carmel Valley, CA 93924, USA
dEcology and Entomology Group, Soil, Plant and Ecological Sciences Division, P.O. Box 84, Lincoln University, Canterbury, New Zealand

ePlant and Microbial Sciences, University of Canterbury, Private Bag 4800, Christchurch 8001, New Zealand
fDepartment of Biology, University of Missouri, St. Louis, MO 63121-4499, USA

Received 22 July 2002; received in revised form 18 March 2003; accepted 31 March 2003

Abstract

Mast seeding, or masting, is the variable production of flowers, seeds, or fruit across years more or less synchronously by

individuals within a population. A critical issue is the extent to which temporal variation in seed production over a collection of

individuals can be viewed as arising from a combination of individual variation and synchrony among individuals. Studies of

masting typically quantify such variation in terms of the coefficient of variation ðCV Þ: In this paper we examine mathematically how

the population CV relates to the mean individual CV and synchrony, concluding that the relationship is a complex one which

cannot isolate an overall measure of synchrony, and involves additional factors, principally the number of plants sampled and the

mean productivity per plant. Our development suggests some simple approximate relationships of population CV to individual

variability, synchrony and the number of individuals. These were found to fit quite well when applied to data from 59 studies which

included seed production at the individual level.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mast seeding, or masting, is the variable and
synchronous production of seeds by a population of
plants from year to year (Janzen, 1971; Silvertown,
1980). The mechanisms of masting (e.g., Koenig
and Knops, 1998) and the adaptive value of masting
(Kelly, 1994; Sork, 1993) are of considerable
evolutionary interest, both for their own sake and
because of the often substantial effects of the pulsed
resources produced during a masting event on animal
populations (Ostfeld and Keesing, 2000). Two of the

most commonly cited benefits of masting include
satiation of seed predators (Janzen, 1971; Silvertown,
1980; Kelly and Sullivan, 1997) and increased pollina-
tion efficiency (Janzen, 1971; Smith et al.,1990; Kelly
et al., 2001).

In general, temporal variation in seed production is
expressed as the coefficient of variation (standard
deviation/mean, sometimes expressed as a percent) in
annual seed production, the idea being that dividing by
the mean allows comparison of variation between
species that differ in the number of seeds produced per
individual as well as comparisons between studies that
differ in how seed production was measured (e.g.
Silvertown, 1980). The coefficient of variation of the
total or mean annual seed crop for the population is
denoted CVp: This quantity is often used as an overall
measure of variability in seed production; see for
example Herrara et al. (1998).
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Herrera (1998) suggested that CVp can be divided into
two primary components when data exist on seed crops
produced by individual plants across years. First is the
mean temporal variation of individual plants, denoted
CV , while the second is the synchrony of seed crops
among individuals across years. Identifying the con-
tributions to masting is valuable because it allows us to
see the extent to which the population variability reflects
individual variability and individual synchrony with the
population (e.g. DeSteven and Wright, 2002). Species
with low synchrony do not qualify as masting species
from the perspective of a reproductive strategy regard-
less of the value of CVp: Thus, synchrony is a key
ingredient of masting (Janzen, 1978). In fact, studies
of masting that address evolutionary questions should
focus on both variability and synchrony among
individuals across years rather than population varia-
bility alone. Herrera (1998) argues that, without
synchrony, the production of large crops by some
individuals in a given year should be accompanied by
small crops in other individuals such that CVp will be
small relative to CV ; the mean individual level CV :
Alternatively, if there is a high level of synchrony,
CVp should be similar to CV : Here we use pairwise
Pearson correlation coefficients to measure synchrony
primarily because it directly enters into the mathema-
tical relationships resulting from decomposing CVp

data. See Buonaccorsi et al. (2001) for a general review
of various methods for quantifying and assessing spatial
synchrony.

Reasons for synchrony have been explored elsewhere
(e.g., Kelly, 1994; Herrera, 1998; Kelly and Sork, 2002)
and here we consider the interrelationships among
various metrics used to quantify masting, following
initial attempts by Herrera (1998). Specifically, we
explore the mathematical relationships among empirical
measures of CVp; CV and synchrony based on decom-
positions of data collected over time for many indivi-
duals. We show that while individual variability and
synchrony contribute to CVp; as suggested by Herrera
(1998), there is no simple way to express the exact
relationship among the three. In fact, one cannot obtain
an expression involving just CVp; CV and an overall
measure of synchrony. We also show that perfect
synchrony does not necessarily imply that CVp equals
CV ; as has been claimed, and characterize the relation-
ship between CVp and CV in the absence of synchrony.
Finally, we use our expressions to develop approximate
relationships relating CVp to CV and an overall measure
of synchrony and demonstrate that this provides an
effective fit to 59 mast data sets.

Our objective here is to resolve some issues concern-
ing the exact numerical relationship among population
variability, individual variability and synchrony based
on data. There are other approaches that can be taken
to provide additional insight, but are beyond the scope

of this paper. One approach, under study, is to
formulate a stochastic model which captures dynamics
for individual plants, spatial correlation among plants
and additional within plant variability, and then
examine the relationships among theoretical measures
of population CV ; individual CVs and synchrony under
these models. A second approach is to explore the data
empirically (e.g., carrying out various regression ana-
lyses) without relying on underlying theoretical models,
in order to identify emergent patterns. Extensive
investigations of this sort, using different models than
the ones presented here, are carried out by Koenig et al.
(2003).

2. General relationships among CVs and synchrony

This section examines the mathematical relationship
between CVp; individual variation, and synchrony
for a set of data with n plants and T years, where xit
is the seed count for plant i in year t: The mean,
standard deviation and CV for plant i are denoted by

%xi; si and

CVi ¼ si= %xi;

respectively. The mean individual CV is CV ¼Pn
i¼1 CVi=n: It will also be useful to define the

coefficient of variation for plant i relative to the overall
mean %x; that is

CVim ¼ si= %x:

The standard deviation of yearly means is denoted by sp
and the population coefficient of variation by CVp ¼
sp= %x: The CVp is the same if yearly totals, rather than
means, are used since sp and %x will both change by the
same scaling constant.

There are two natural decompositions associated with
the data, which are described in detail in Appendix A.
The first leads to

CV 2
p ¼

P
i s

2
i

n %x2
�

SSI

n %x2ðT � 1Þ

¼
P

i CV
2
im

n
�

SSI

n %x2ðT � 1Þ

¼
P

i %x2i CV
2
i

n %x2
�

SSI

n %x2ðT � 1Þ
; ð1Þ

where SSI is the sum of squares due to the interaction
of plants and years and is related to synchrony, in that
SSI ¼ 0 under one concept of perfect synchrony
(described in more detail later).
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The second decomposition leads to

CV 2
p ¼

P
i s

2
i

n2 %x2
þ

P
i

P
kai sik

n2 %x2

¼
P

i CV
2
im

n2
þ

P
i

P
kai riksisk

n2 %x2

¼
P

i %xi
2CV 2

i

n2 %x2
þ

P
i

P
kai riksisk

n2 %x2
; ð2Þ

where rik is the Pearson correlation between counts
for plants i and k and sik is the covariance between
plants i and k: Correlation has been widely used
to measure synchrony and one summary measure of
synchrony over the n individuals is the mean
correlation %r ¼

P
i

P
kai rik=ðnðn� 1Þ=2Þ over all pairs

of plants.
Unfortunately, as seen from Eqs. (1) and (2), the

relationship between CVp; CV ; and synchrony is not
simple, even when the latter is measured as the mean
Pearson correlation coefficient. One reason for this
stems from the use of individual CVis, each defined
relative to the mean of the individual plants, rather than
individual CVs defined relative to the overall population
mean (CVims).

It is only exactly true that population variation ¼
individual variationþ synchrony; if we think of popula-
tion variation as CV 2

p ; measure individual variation withP
i CV

2
im=n

2 and measure synchrony with eitherP
i

P
kai riksisk=n

2 %x2 or �SSI=n %x2ðT � 1Þ:

2.1. Perfect synchrony

One, but not the only, definition of perfect synchrony
is that plots of counts over time for different individuals
are piecewise parallel (see Figs. 1 and 2). Mathemati-
cally, this means there are constants c2;y; cT such that
xit ¼ xi;t�1 þ ct for each i and for 2ptpT : This means
that seed production in all plants changes by the same
amount in moving from one year to the next. The
interaction term SSI is related to synchrony in that
when the data are piecewise parallel, then SSI ¼ 0; as
noted by Herrera (1998). This does not imply however
that CVp will equal CV : With piecewise parallelism, the
standard deviation in counts over years is the same for
each plant and is equal to sp; the standard deviation in
mean counts over years. This leads to

CVp � CV ¼ sp
1

%x
�

P
ið1= %xi:Þ
n

� �
p0: ð3Þ

The inequality at the end results from the fact that the
harmonic mean is less than or equal to the arithmetic
mean (Casella and Berger, 1990, p. 183). Hence, CVp is
not equal to CV and the difference can be made large or
small depending on several factors (see below). If the
individual CVs are defined relative to the overall mean,
however, then it is true with perfect synchrony of this
type, that CVp ¼

P
CVim=n:

Figs. 1 and 2 illustrate further how factors other than
synchrony influence the difference between CVp and CV

in masting data. Under conditions of perfect synchrony
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as just defined, with the among-year standard deviation
fixed, the difference between CVp and CV will increase
with the standard deviation in mast production across
individual plants (which reflects the term in brackets in
Eq. (3)) as portrayed in Fig. 1. In other words, the larger
the discrepancy in crop size between good producers and
poor producers, the larger the difference between CVp

and CV : For Fig. 2, we continue to maintain perfect
synchrony, keep the variation among plants and CVp

constant, while allowing the overall mean and among-
year variation to change. Again the CVp remains
constant while CV decreases as the yearly mean
increases. These two figures illustrate that the difference
between CVp and CV cannot be interpreted as being just
due to synchrony, since there is perfect synchrony
throughout.

Perfect synchrony in the sense of piecewise parallelism
will imply a mean pairwise correlation coefficient of %r ¼
1:0: The converse is not true, however; that is %r ¼ 1:0 can
occur even without piecewise parallelism.

Another type of perfect synchrony is to have constant
relative change; that is xi;t ¼ ctxi;t�1; where as before this
is for each i and 2ptpT : This is equivalent to piecewise
parallelism on the logðxÞ scale. In this case it can be
shown (see Appendix B) that all the pairwise correla-
tions, and hence the mean correlation, equal 1.0, when
calculated in terms of either x or logðxÞ: Further, in
terms of the x values, CVp ¼ CV ; yet SSIa0: Mean-
while, for the logðxÞ values, there is piecewise paralle-
lism, that is SSI ¼ 0 and %r ¼ 1:0; but CVpaCV

(although CVp ¼
P

CVim=n). These results point out

further the difficulty with trying to characterize what
‘‘perfect synchrony’’ implies about the relationship
between CVp and CV :

2.2. No synchrony

In the case of no synchrony, which we take here to be
that all pairwise correlations are equal to 0, then from
Eq. (2),

CV 2
p ¼

P
i %x2i:CV

2
i

n2 %x2
¼

P
i s

2
i

n2 %x2
: ð4Þ

This relationship shows explicitly how even in the
absence of synchrony, a change in individual variances
can lead to an increase in CVp: It also shows that other
things being equal, CVp will decrease as the number of
individuals in the study increases. This effect of sample
size makes sense intuitively because unless the plants are
perfectly synchronized, adding more plants will increase
the chance that high producers will cancel out low
producers in their effect on total crop size. This effect is
important because plant level data sets are rare and
many of those available have low numbers of indivi-
duals (e.g., half of the 16 data sets in Herrera (1998) had
less than 30 plants).

2.3. Some approximate relationships

In terms of correlation, Eq. (2) shows that, other
things being equal, an increase in correlation between
plants will lead to an increase in CVp; but this result
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involves the individual pairwise correlations rather than
an overall measure of synchrony for the population. As
this expression shows, there is nothing exact that can be
stated about the relationship between CVp; %CV and %r ¼
the average pairwise correlation between distinct pairs
of plants. We can make, however, make use of Eq. (2) to
try and develop some approximate relationships.

Define

A ¼
X
i

CV 2
im=n

to be the average of the squared individual CVs when
defined relative to the overall mean. Writing si ¼
%xA1=2 þ ei; where ei ¼ ðsi � %xA1=2Þ ¼ si � ð

P
i s

2
i =nÞ

1=2;
then CV 2

p ¼ Z þQ (exactly) where

Z ¼ A
1

n
þ

ðn� 1Þ%r
2n

� �

and Q ¼
P

i

P
kai rik½ %xA

1=2ðei þ ekÞ þ eiek�=n2 %x2:
Using a linear Taylor series expansion about Q ¼ 0
yields

CVpEZ1=2 þ E; ð5Þ

where E ¼ Q=ð2Z1=2Þ: Given the definition of ei; the
quantity Q; and hence the remainder E; will be largely
influenced by the ‘‘variability’’ in the individual plant
standard deviations. Notice that if all the si are the same
then each ei; and hence Q; equals 0. Eq. (5) provides
some insight into how CVp depends on the mean
correlation, the within plant variances, the number of
plants and the average within plant variability (relative
to the overall productivity). In particular, it shows
that with a fixed n and amount of within plant
variation, then CV 2

p increases approximately linearly in
synchrony.

The mean of the individual CVs, is widely used in
summarizing individual variability (see Herrera, 1998),

but does not arise naturally from the decompositions.
One can make use of it by treating A1=2 as approxi-
mately CV : There are a couple of ways to motivate this
approximation; one by using just the first terms of
a Taylor series expansion of the CV 2

im around CV

and another by considering the inequality
ð
P

i ða
2
i ÞÞ

1=2
Xn�1

P
i jaij (see Casella and Berger, 1990,

p. 181) and treating the inequality as an approximation.
Using this ad hoc approximation yields

CVpECV
1

n
þ

ðn� 1Þ%r
2n

� �1=2
þE: ð6Þ

3. Data fitting

The effectiveness of the above simple, but approx-
imate, expressions, are examined by seeing how well
they fit to 59 masting data sets involving 24 species of
plants. These data, which are described in detail in
Koenig et al. (2003), involve a wide range of values for
the number of individuals and the number of time
points. Fig. 3 shows a three-dimensional plot of CVp

versus %r and CV for these data. We examine two fits to
the data. The first fit, based on Eq. (5), is

CVp ¼ A1=2 1

n
þ

ðn� 1Þ%r
2n

� �1=2
þ0:1349;

where the 0.1349 is the value of E in Eq. (5) which
minimized the sum of squared residuals. This fit
explained 94.2 percent of the total variation in observed
CVp; with a plot of fitted CVp versus observed CVp

given in Fig. 4a.
The second fit, based on Eq. (6), is

CVp ¼ CV
1

n
þ

ðn� 1Þ%r
2n

� �1=2
þ0:2554;
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where again the constant was chosen based on least
squares. This fit explained 83.2 percent of the variation
in observed CVp (Fig. 4b).

The quality of these fits, suggest that Eqs. (5) and (6)
(and especially the former) provide a useful tool for
understanding the contributions of synchrony and
individual variation to CVp:

4. Discussion

Herrera (1998) has argued that, while population CV

may provide a useful index of mast seeding, it is an
inadequate measure for dissecting out the ecological and
evolutionary cause of mast seeding in plants. The
approach he suggested was to decompose the popula-
tion-level temporal variation into two components;
within-plant variability and among-plant synchrony.
In this paper, we have shown that the population
temporal variation, as measured by the coefficient of
variation, is a complicated function of a combination of
factors, predominantly affected by within-plant varia-
bility and synchrony, but also including the number of
plants and the overall mean productivity. While it is true

that population CV is related in some manner to mean
individual CV and an overall measure of synchrony, we
have shown that there is no simple expression for this
relationship. The expressions given also lead to the
conclusion that:

(1) Perfect synchrony (in the sense of piecewise
parallel profiles over time), does not imply that
population CV is equal to mean individual CV ;
as is demonstrated in Eq. (3), unless the individual
CVs are defined relative to the overall mean rather
than using the individual means. Related to the latter
point, it is the CVs defined relative to the overall
mean that enter into the decompositions in a natural
way. On the other hand, if the profiles over time are
piecewise parallel over time in terms of log(seed count)
(meaning all plants have the same relative change in seed
counts in a year) then population CV does equal mean
individual CV ; when calculated on the seed values
themselves.

(2) The population CVp may be large even when there
is no synchrony among plants, (Eq. (4)), especially when
the number of sample plants is low or the mean
productivity is low.
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(3) With a fixed amount of within-plant variability,
CVp increases as the amount of synchrony increases,
with the rate of increase generally depending on the
number of individuals, the amount of within plant
variability, and the overall mean.

(4) While no simple relationships resulted, Eqs. (5)
and (6) provide some simple and useful approximations
which account for 83–95 percent of the variation in CVp

in 59 real data sets.

Nothing in this analysis suggests that CVp is not a
useful measure of variation in population-level seed
output (cf. Herrera, 1998). The CVp is clearly affected by
mean CVi and inter-plant synchrony (as also shown
empirically by Herrera). However, there are also
influences of sample size in terms of number of plants
sampled, and productivity per plant.
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Appendix A. Justification of Eqs. (1) and (2)

Eq. (1) results from the use of analysis of variance
decompositions (Neter et al., 1996). Using the standard
notation for means over indices, write %xi: ¼

P
j xij=T

for the mean for plant i; %x:j ¼
P

i xij=n for the mean for
year j and %x:: for the grand mean. For notational
convenience, the main text uses simply %xi and %x for %xi:
and %x:: respectively. Define SStot ¼

P
i

P
j ðxij � %x::Þ

2

(total sum of squares), SST ¼ T
P

i ð %xi: � %x::Þ
2 (among

plant sum of squares), SSW ¼
P

i

P
j ðxij � %xi:Þ

2

(within plant sum of squares), SSY ¼ n
P

j ð %x:j � %x::Þ
2 ¼

ðamong year sum of squaresÞ and SSI ¼
P

i

P
j ðxij �

%xi: � %x:j þ %x::Þ
2 (sum of squares due to interaction

between plant and year).
The standard decomposition for the one-way analysis

of variance with plants as groups, yields SStot ¼ SST þ
SSW ; while the standard decomposition for a two way
analysis of variance with one observation per cell yields
SStot ¼ SSY þ SST þ SSI : Equating these two, SST þ
SSY þ SSI ¼ SST þ SSW and so SSY ¼ SSW � SSI :
Using the earlier defined s2p and s2i ; we have s2p ¼
SSY=ðnðT � 1ÞÞ and SSW ¼ ðT � 1Þ

P
i s

2
i : Hence

s2p ¼ ðSSW �SSIÞ=nðT�1Þ ¼
P

i s
2
i =n�SSI=ðnðT � 1ÞÞ:

Dividing both sides by %x2:: leads to Eq. (1).

Eq. (2) results from first expressing
P

i

P
k

P
j ðxij �

%xi:Þðxkj � %xk:Þ in two ways; asX
j

X
i

ðxij � %xi:Þ
X
k

ðxkj � %xk:Þ

¼ n2
X
j

ð %x:j � %x::Þ
2

and asX
i

X
j

ðxij � %xi:Þ
2 þ

X
i

X
kai

X
j

ðxij � %xi:Þðxkj � %xk:Þ

¼ ðT � 1Þ
X
i

s2i þ
X
i

X
kai

sik

" #
:

Equating the two,

n2
X
j

ð %x:j � %x::Þ
2 ¼ ðT � 1Þ

X
i

s2i þ
X
i

X
kai

sik

" #
:

Dividing both sides by n2ðT � 1Þ %x2:: yields Eq. (2).

Appendix B

Suppose xi;t ¼ ctxi;t�1; for each i and 2ptpT :
Defining c1 ¼ 1; then from successive multiplications
xi;t ¼ qtxi1 where qt ¼

Qt
j¼1 cj ; with

Q
denoting pro-

duct. Denote the mean and variance of q1;y; qT by %q

and s2q; respectively. Now %xi ¼
PT

t¼1 xiT=T ¼ %qxi1 and
xit � %xi ¼ ðqt � %qÞxi1; which implies that s2i ¼PT

i¼1 ðxit � %xiÞ
2=ðT � 1Þ ¼ x2i1s

2
q and hence for every i;

CVi ¼ si= %xi ¼ sq= %q: The mean in year t is %x:t ¼P
i xit=n ¼ qt %x:1; where %x:1 is the mean in year 1.

Hence %x::; the grand mean, equals %q %x:1; s2p ¼ %x2:1s
2
q

and so CVp ¼ sq= %q ¼ CV ; since each individual CVi

equals sq= %q:
The correlation between series i and series j is

rij ¼
P

t ðxit � %xi:Þðxjt � %xj:Þ=ðT � 1Þ
sisj

¼
P

t ðqt � %qÞ2ðxi1xj1Þ=ðT � 1Þ

½s2qx
2
i1s

q
qx2j1�

1=2
¼ 1:
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