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The pollen dispersal distribution is an important element of
the neighbourhood size of plant populations. Most methods
aimed at estimating the dispersal curve assume that pollen
dispersal is isotropic, but evidence indicates that this
assumption does not hold for many plant species, particularly
wind-pollinated species subject to prevailing winds during the
pollination season. We propose here a method of detecting
anisotropy of pollen dispersal and of gauging its intensity,
based on the estimation of the differentiation of maternal
pollen clouds (TWOGENER extraction), assuming that pollen

dispersal is bivariate and normally distributed. We applied
the new method to a case study in Quercus lobata, detecting
only a modest level of anisotropy in pollen dispersal in a
direction roughly similar to the prevailing wind direction.
Finally, we conducted a simulation to explore the conditions
under which anisotropy can be detected with this method,
and we show that while anisotropy is detectable, in principle,
it requires a large volume of data.
Heredity (2007) 99, 193–204; doi:10.1038/sj.hdy.6800983;
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Introduction

Estimating the shape of the pollen dispersal distribution
is a critical issue for plant population biology (Austerlitz
et al., 2004), because that distribution determines the
effective size of the local breeding neighbourhood
(Wright, 1943). Standard estimation techniques rely on
the assumption of isotropic pollen dispersal (for exam-
ple, Burczyk et al., 2002; Austerlitz et al., 2004), but
prevailing wind directions are rather common, and the
isotropic assumption may be too limiting for wind-
pollinated species. Few studies have been carried out
that considered the subject in detail, and these are with
contrasting results. On the basis of a data set of
phenotypic markers (Bateman, 1947), Tufto et al. (1997)
used a Brownian motion model to show that pollen
dispersal in an experimental planting of maize was
anisotropic. Shen et al. (1981) reported an effect of wind
direction on pollen flow in a Scots pine seed orchard.
Meagher et al. (2003) showed directional pollen flow in a
wind-pollinated transgenic grass cultivar, Agrostis stolo-
nifera. In contrast, others have found little anisotropy in
wind-pollinated tree species (for example, Burczyk et al.,

1996, 2004; Burczyk and Prat, 1997; Lian et al., 2001;
Robledo-Arnuncio and Gil, 2005). Moreover, Klein et al.
(2006) encountered no tendency towards anisotropy for
oilseed rape, a crop species with a mixed (insect and
wind) pollination system. Thus, we see that anisotropy is
possible, but not inevitable.

Many population biologists have expressed concern
that landscape fragmentation is decreasing the size of
local populations and reducing genetic connectivity
among them (for example, Ledig, 1992; Young et al.,
1996; Nason et al., 1997; Couvet, 2002), and anisotropy, if
present, could increase that threat. Temperate tree
species may be particularly sensitive to such changes,
because historical population sizes have been large, and
a sudden reduction in local population size can increase
the possibility of inbreeding and inbreeding depression.
In addition, if the fragmented populations are spatially
isolated, the lack of gene flow could contribute to a loss
of genetic variation (for example, Fernández-M and Sork,
2007), especially in the long term (Lowe et al., 2005).
Under other circumstances, fragmentation promotes
gene flow among fragments, because the lack of
vegetative cover facilitates more extensive pollen flow,
especially when the fragments are not far apart (for
example, Young et al., 1996). Under those conditions,
anisotropy can increase gene flow among some frag-
ments and restrict it among others.

One of the key elements of connectedness among
populations will be the modelling of the pollen dispersal
curve and the potential for a long tail (Nichols and
Hewitt, 1994). Early methods utilized paternity analysis
to model the pollen curve over a restricted sample area
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and then assigned the progeny with unidentified fathers
to gene immigration (for example, Adams and Birkes
1991; Adams et al., 1992). Using variations on this basic
theme, several methods have been proposed to estimate
the pollen dispersal curve (for example, Burczyk et al.,
1996, 2002; Smouse et al., 1999; Oddou-Muratorio et al.,
2005), although not with any particular attention to the
issue of anisotropy. Examination of empirical studies (for
example, Streiff et al., 1999; Burczyk et al., 2002; Meagher
and Vassiliadis, 2003), suggests that individual maternal
trees will receive the majority of their pollen from local
pollen donors, the rest of the pollen being contributed by
many individuals located further away. None of these
studies examined the variance in the dispersal curve
owing to anisotropy; yet this factor could interact with
connectivity by either increasing or decreasing the
variance in dispersal, depending on the direction.

Despite the value of paternity analysis in describing
the pattern of pollen dispersal, it requires a large
sampling effort, involving the maximum possible frac-
tion of the potential fathers of a given set of seeds, which
makes it difficult to sample on a landscape scale (Sork
et al., 1999; Smouse and Sork, 2004; but see Oddou-
Muratorio et al., 2005). To improve the scale of sampling
and to provide an alternative method for the instances
where genetic resolution is limited and/or where
enumeration and sampling of the bulk of the paternal
candidates is not feasible, an alternative method (dubbed
TWOGENER) has been developed (Smouse et al., 2001).
This method consists of computing the genetic differ-
entiation between the pollen clouds of a large sample of
mothers, physically spread across the landscape, and
it requires only the genotypes of these mothers, along
with those of a sample of seeds from each of them.
Assuming an isotropic pollen dispersal curve that is
either exponential or normal, this method can be used
to estimate the average distance of pollen dispersal
(Austerlitz and Smouse, 2001). We subsequently extended
this TWOGENER approach to estimate the mean dispersal
distance (d) parameter, along with the effective density of
reproductive adults, de (Austerlitz and Smouse, 2002).
In a more recent effort, we have extended the treatment
to estimate both scale and shape parameters of the
dispersal curve, by extending the isotropic treatment to
several two-parameter families, in particular the expo-
nential power family of distributions (Austerlitz et al.,
2004). Empirical studies show that paternity and TWO-

GENER analyses yield similar estimates (Austerlitz et al.,
2004; Burczyk and Koralewski, 2005), but we have no
idea of the bias that may occur when these isotropic
methods are used in situations of strongly directional
pollen dispersal.

Our main objective in this paper is to develop an
anisotropic extension of the TWOGENER dispersal-curve
extraction, which allows us to infer both the major axis of
pollen dispersal, and the standard deviation of dispersal
along this axis, as well as that along the orthogonal axis,
assuming that pollen dispersal follows a bivariate
normal distribution that is anisotropic. We also develop
a permutation method that allows us to test the
significance of this estimate. We then apply this method
to test for wind-related anisotropy in a population of
Quercus lobata occurring in an oak-Savannah ecosystem
of southern California. Finally, we perform a simulation
study, which is by no means exhaustive, but which

evaluates the extent to which anisotropy can be detected
in a design such as that we have used here. The
parameters of our simulated populations were chosen
to be as close as possible to those of the study population
and to test these parameters under similar and contrast-
ing spatial arrays of trees, so that we can assess both the
bias and precision (variance) of our estimates under
natural conditions and the power and robustness of our
permutation method.

We apply this approach to anisotropic pollen move-
ment to California valley oak (Q. lobata), a threatened tree
species from the Central Valley of California that has
undergone dramatic demographic attrition owing to
habitat conversion and low adult recruitment rates in
remaining populations since early European settlement
in the 19th century (Pavlik et al., 1991). The species now
occurs mainly in open savannahs in valleys and foothills
of the Coast Ranges and Sierra Nevada mountains, and
to a lesser extent in narrow gallery forests of the Central
Valley. Conservation of this species has become a priority
for the State of California, and estimation of gene flow
rates and distances are a prerequisite for effective
management of its genetic diversity. Our studies indicate
that average pollen dispersal distance for savannah
populations of Q. lobata ranges between 64 to 350 m,
the precise value depending on the family of dispersal
curves assumed, as well as the estimate of the effective
adult reproductive density, de (Sork et al., 2002; Austerlitz
et al., 2004). Because of the low adult density, all the
estimates indicate a small reproductive neighbourhood
size.

This wind-pollinated species seems a possible
candidate for directional pollen movement. Detailed
anemometer data from a nearby meteorological station
document strong prevailing winds during the pollination
season (Dutech et al., 2005). If wind direction has a
significant effect, the orientation of populations and the
primary direction of pollen flow should be taken into
account in estimating the effective number of pollen
donors per female tree. In a separate study of spatial
genetic pattern of adults at this same study site, Dutech
et al. (2005) found suggestive (though non-significant)
evidence of anisotropic spatial autocorrelation. Those
adults were all established between 400 and 100 years
ago, and the population has experienced a long period of
gradual demographic attrition, so we speculated that an
initial anisotropic signature might well have decayed
over time and that we might expect to find a stronger
‘wind signature’ among new recruits (Dutech et al.,
2005).

Methods

Anisotropic TWOGENER

In the interest of mathematical tractability, we restrict
ourselves here to the case of the bivariate anisotropic
normal pollen dispersal kernel. Our previous studies
have shown that it is clearly not the best-fitting curve in
many cases (Austerlitz et al., 2004), but the possibility
of deriving explicit closed-form formulas makes it a
tractable starting point for any attempt to develop a
method of detecting anisotropy, without resorting to
strictly numerical analysis. This pollen dispersal dis-
tribution is characterized by three parameters, a, smax
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and smin. The first parameter (a) corresponds to the
angle between the north–south axis and the major axis
of observed pollen dispersal (rotating clockwise). The
second is the standard deviation (smax) of pollen
dispersion along this major axis, and the third is the
standard deviation (smin) of pollen dispersion along the
minor (perpendicular) axis.

As an angle between two axes, a can take values
between 01 and 1801 (0 to p radians). For a wind-
pollinated species, the natural expectation is that the
major axis of pollen flow (a) should be similar to that of
the prevailing wind direction. More precisely, we assume
that pollen disperses with equal probability to any point
of an ellipse, for which the major axis makes an angle a
with the Y axis and for which dispersion along the major
and minor axes are proportional to the values of smax

and smin, respectively (Figure 1). The classical equations
describing an ellipse in a Cartesian system yield

pða; smin; smax; x; yÞ

¼ 1

2psmaxsmin
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2s2
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2s2
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!#
: ð1Þ

When smax¼smin, all terms containing the angle a cancel,
reducing Equation (1) to its isotropic bivariate form,
where pollen disperses with equal probability to any
point on a circle around the origin. We computed the
average dispersal distance d (integrated around the
ellipse) for the anisotropic distribution, using MATHEMA-

TICA (Wolfram, 1999), as
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where E(m) denotes the complete elliptic integral,
defined as

EðmÞ ¼
Zp=2

0

ð1 � m sin2 ðxÞÞ1=2dx;

for any nonnegative m value. While d cannot be
computed in closed form, numerical integration is easily
accomplished, and the MATHEMATICA software program
does that routinely, with the function EllipticE. This
integration is also performed automatically in the soft-
ware program that we provide (see below), which does
not require the installation of MATHEMATICA.

As in our previous studies, the estimates that we
develop here are based on the TWOGENER method
(Smouse et al., 2001), where the level of differentiation
(fij) between the pollen clouds is computed for all pairs
of females for which seeds have been sampled in the
population (Austerlitz and Smouse, 2002; Austerlitz
et al., 2004). For each of these pairs, the observed level
of pollen pool genetic differentiation (fij) is compared
with the theoretical level of differentiation expected
between these two females, a distance zij apart. For
isotropic distributions, the theoretical expectation for fij

value between the ith and jth females is dependent only
on the parameters of the dispersal curve, the effective
adult reproductive density (de) and the physical distance
(zij) between them (Austerlitz et al., 2004). Where
direction matters, this theoretical fij will also depend
on the angle (yij) made by the line that joins these two
females, relative to the Y axis (see Figure 2).

The equation for the pairwise fij for two females
at distance zij, making an angle yij with the Y axis is
computed, following Austerlitz and Smouse (2001), as

fijðd; a; smin; smax; zij; yijÞ

¼
Q0ðd; a; smin; smaxÞ � Qðd; a; smin; smax; zij; yijÞ

2 � Qðd; a; smin; smax; zij; yijÞ
;

ð3Þ

where Q0ðd; a; smin; smaxÞ is the probability that two
male gametes, sampled from the pollen cloud of the
same female, were drawn from the same father;
Qðd; a; smin; smax; zij; yijÞ the probability that two male
gametes, sampled from the pollen clouds of the ith and
jth females, were from the same father. It develops that
Q0ðd; a; smin; smaxÞ can be computed directly, using
Equation (10) from Austerlitz and Smouse (2001) as

Q0ðd; a; smin; smaxÞ

¼ 1

d

Z1
�1

Z1
�1

p2ðd; a; smin; smax; x; yÞdxdy;
ð4Þ

where pða; smin; smax; x; yÞ is the dispersal distribution
defined in Equation (1). Qðd; a; smin; smax; zij; yijÞ can be

Figure 1 Schematic representation of the dispersal parameters of
the dispersal curve. The probability of pollen dispersal is the same
for every point on the represented ellipse. a, smax and smin

correspond, respectively, to the major dispersal axis, the standard
deviation of dispersal along this major axis and the standard
deviation of dispersal along the minor axis.

Figure 2 The two physical quantities that are computed between
the ith and jth mothers, their physical distance of separation (zij)
and the angle they make with the Y axis (yij).
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computed as

Qðd; a; smin; smax; zij; yijÞ

¼ 1

d
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ð5Þ
Note that, as in our previous models (Austerlitz and

Smouse, 2001; Austerlitz et al., 2004), Equations (3) and
(4) are based on the assumptions that the reproductive
trees are randomly distributed on the landscape, follow-
ing a point process pattern. We also assume that these
adults are not inbred, and that there is also no biparental
inbreeding. The integrals involved in Equations (4–5) are
computable analytically, using Mathematica 4.1, and
their expressions can be inserted into Equation (3),
yielding (after further simplification):
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The dispersal parameters a, smax and smin can be

estimated by numerically minimizing the squared-error
loss criterion for the choice of these parameters,

Cðd; a; smin; smaxÞ

¼
Xnm

ioj

fobs
ij � fijðd; a; smin; smax; zij; yijÞ

� �2 ð7Þ

where nm is the number of sampled mothers. The
effective reproductive density (d) can be set to a fixed
value, usually the adult census density of the population,
or it can be estimated jointly with the dispersal
parameters. The standard deviation of each estimate
was computed by jack-knifing among loci (Weir, 1996).

The level of anisotropy was computed as the ratio
Ra¼smax/smin. Two Ra values can be estimated, one
(R̂a1) with d fixed at the census density and one (R̂a2) with
d jointly estimated. We tested the significance of both R̂a

values with a simulation approach. For this, we
estimated their null distribution by generating 1000
simulated data sets based on the hypothesis of isotropic
dispersal. The simulations were performed with the
simulation method described below, using as inputs the
spatial positions of the mothers and the potential fathers
(including the non-genotyped ones) and the genotypes of
the mothers. For the potential fathers, the genotypes
were completed when partially known or created when
completely unknown, by drawing their alleles at each
locus according to the estimated allelic frequencies
within the population. For the null distribution of Ra1,
the simulations were performed assuming an isotropic
normal distribution with parameter s1, where s1 repre-
sents the estimated value of s from TWOGENER assuming
an isotropic dispersal and fixed density. For Ra2, we used

an isotropic normal distribution with parameter s2,
where s2 represents the estimated value of s from
TWOGENER assuming an isotropic dispersal with density
jointly estimated. Then, the tail probability of each
estimated R̂a value was computed as the proportion of
values in the null distributions that were above the actual
data result. Note that this method requires the spatial
positioning of the adults several hundreds of metres
around the sampled mothers, but not their genotyping.

Note also that the pollen dispersal distribution given
in Equation (1) is centred on zero. It means that, while we
can predict a main axis of pollen dispersal, we cannot
predict directionality. For instance, we can say that the
main dispersal axis makes a 101 angle with the North–
South axis, but we cannot assess whether the main wind
comes from the south or the north. This constraint comes
from the symmetry in the TWOGENER pairwise Fft

coefficients: for each pair of mothers A and B, we can
compute only one Fft value, and this value will be the
same whether the wind blows mostly from A to B or
from B to A.

Software programs for all of the methods
described here are available in the POLDISP package
(Robledo-Arnuncio et al., in press), available at
http://poldisp.googlepages.com/.

A case study in Valley oak

Study site and sampling regime
The study site is located at the U.C. Santa Barbara
University of California’s Sedgwick Reserve, along
Figueroa Creek (341420N, 1201020W), 10 km northeast of
Santa Ynez, in Santa Barbara County, California (Sork
et al., 2002). Valley oaks at our study site occupy deep

Figure 3 Map of the study population in Figueroa Valley at
Sedgwick Reserve, Santa Barbara Co., CA, USA, with all adult
trees indicated by white dot and sampled trees circled.
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alluvial soils on the valley floor and adjacent hill slopes,
at elevations ranging from 300 to 400 m above sea level
(Figure 3). The valley is oriented roughly 51–101 west-of-
north to east-of-south, and is bounded by ridges ranging
in elevation from 440 to 475 m above sea level. The
current adult stem density of Valley oak in the study area
averages about 1.19 trees/ha at Figueroa Creek, and most
individuals are greater than 85 cm diameter at breast
height, representing adults that are probably at least 150
years of age.

Since 1997, the Sedgwick Reserve has maintained a
weather station located on a level terrace, approximately
1 km (750–1500 m) west of our study population. We
analysed hourly average wind speed and direction for
daytime hours (0900–1800, PST) during the main flower-
ing period of 1 March to 30 April 2001, the year of this
study (Figure 4). During the flowering period, wind
speeds averaged 3.271.6 m/s, with maximum hourly
averages of 7–8 m/s. The wind rise shows the strong
directionality of winds from the west-northwest, the
main wind axis being 2901, which is true for most low-
elevation locations in the Santa Ynez Valley (see for
example, Ogden, 1975). Relative to the weather station,
wind speeds in the study area may be reduced slightly
by the sheltering effect of local topography, but the
direction should be much the same.

In the fall of 2001, we sampled acorns from as many
trees as possible in the Figueroa Creek area, obtaining
seeds from 31 maternal trees (Figure 3). The average
distance between sampled maternal trees was 865 m;
minimum distance was 13 m and maximum distance was
3198 m. The collected acorns were conveyed to the
University of Missouri (St Louis, CA, USA) and planted
in a greenhouse for germination. We collected one leaf
per seedling for DNA analysis. The number of seedlings
analysed per family ranged from 5 to 12 (mean¼ 8.72).

DNA analysis
We extracted total DNA from 30 to 40 mg of leaf tissue
from each individual (offspring and mother trees), using
a CTAB (cetyltrimethylammonium bromide) buffer and

liquid nitrogen, following the method described in Sork
et al. (2002). We utilized a battery of six microsatellite loci,
originally developed from other oak species: QrZAG20,
QpZAG36, QpZAG46 and QpZAG110 developed by
Steinkellner et al. (1997) from Q. robur and Q. petraea;
MSQ4 developed by Dow et al. (1995) from Q. macrocarpa;
JFF58, which is a redesign of the QpZAG58 primer pair
(Steinkellner et al., 1997) performed by JF Fernández-M
(unpublished data). The sequence of the new forward
primer is ATCCATTATCTGCAAGATTC and the reverse
primer is TCTTCTCTTTTCTTTTTCCT. QrZAG20,
QpZAG36, QpZAG110 and MSQ4 were used to describe
spatial genetic structure of adults at Sedgwick Reserve
(Dutech et al., 2005). We used PCR methods and
visualization on denaturing acrylamide gels, as de-
scribed by Sork et al. (2002), to reveal polymorphism at
these microsatellite loci. We genotyped all 31 mothers
and their offspring for these six loci, along with 57 other
adults, to have a reliable estimate of allelic frequencies
for each of the loci, needed for the TWOGENER analysis.

Empirical results
The global differentiation of the pollen clouds was low
(Fft¼ 0.040). First assuming isotropic dispersal and
setting effective reproductive density equal to average
adult density (d) for our Figueroa Creek site
(d¼ 1.19 trees/ha), we estimated an isotropic normal
dispersal standard deviation for pollen dispersal of
ŝ¼ 88.6 m, which corresponds to a mean dispersal
distance (d̂) of 111 m (Austerlitz and Smouse, 2001). The
joint estimation of effective density and dispersal
distance yielded a larger value for dispersal distance
(ŝ¼ 193 m, d̂¼ 242 m), along with an estimated effective
density (d̂e) of 0.616 individuals per ha, so (d̂e/d)¼B0.5.

Using the anisotropic Gaussian dispersal model
described above, we obtained an estimate of the angle
made by the major dispersal axis with the north axis (â)
of 154172.631, along with a standard deviation of
dispersal, along this axis (ŝmax) of 185729 m, as well as
a minor axis ŝmin of 4273 m (Figure 5). From Equation
(2), these estimates yielded an estimated mean pollen
dispersal distance of d̂¼ 151722 m, slightly above the
value obtained with isotropic dispersal. The estimated
ratio of standard deviations, R̂a¼ (ŝmax/ŝmin) was 4.39,
not significant (P¼ 0.4) with the permutation method.
When density was jointly estimated with the dispersal
parameters, it was estimated to be d̂e¼ 0.67470.399
trees/ha, and using that as our density estimate, we

Figure 4 Wind rose describing the direction and velocity of wind
during the main flowering period of the study year 2001 between
0010 and 0018.

Figure 5 Elliptic representation of the dispersal function (see
Figure 1) where density is set at its fixed value. The dashed line
represents the main wind direction (see Figure 4).
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obtained ŝmax¼ 2337224 m, ŝmin¼ 56712 m, â¼ 15217
7.221 and d̂¼ 2647178 m. These figures yield R̂a¼ 4.12,
also not significant (P¼ 0.43).

Simulation study

Procedures
We performed a simulation study, designed to mimic the
Valley oak study, to assess the power and robustness of
the anisotropic analysis. We simulated a spatially explicit
population of 314 individuals (the number of adults at
the Figueroa Creek site; see Figure 3). All individuals
were characterized according to their spatial coordinates
and their genotypes at the six loci used above. The
spatial coordinates were strictly the same as in the study
population. We had the complete six-locus genotypes of
the 88 individuals (31 mothers and 57 other adults) that
we used for the empirical analysis above. We had
another 162 adults with only four of the six loci from
Dutech et al. (2005). These four-locus genotypes were
held as is, with the other two loci being drawn at random
from a Hardy–Weinberg gene pool formed with the
allelic frequencies from the 88 previous individuals. We
had another 160 for which we had spatial locations, but
no genotypes, and for these, we drew six-locus geno-
types from the Hardy–Weinberg gene pool. We also had
a few holes in the data (missing loci), which were filled
by random draws from the Hardy–Weinberg gene pool.

Then we simulated progenies for a given number (nm)
of chosen mothers, following the procedure explained by
Austerlitz and Smouse (2002). Briefly, assume that pollen
follows a dispersal distribution p(O; x, y), where O¼
{a, smax, smin} is the set of dispersal parameters under
discussion. We assumed equal male fecundities, so that
the pollination probabilities were determined by the
array of intermate distances only. The likelihood, pmi, of
the male at position (xi, yi) providing the gamete
fertilizing an ovule for a female at position (xm, ym) is

pmi ¼
pðO; xi � xm; yi � ymÞPn

j¼1

pðO; xj � xm; yj � ymÞ
; ð8Þ

which assumes that the probability of fertilizing a given
female depends only on the distance to that female, and
so that every individual has the same male fertility. The
genotype of the resulting offspring is constituted by
first drawing its father, according to the pmi, and then
assigning a pair of gametes, one from each parent, in
Mendelian proportions.

We performed simulation analyses of three different
dispersal functions. First, we used an anisotropic
dispersal model, with parameters a¼ 1541, smax¼ 186 m
and smin¼ 42 m, as estimated from the empirical data
(see Case study). Second, we used a dispersal function
with the same values of smax and smin, but with an angle
a¼ 641, orthogonal to that major axis, to determine
whether we could have detected anisotropy had the
major axis been rotated 90o. This rotation tests whether
our observed result was an artifact of the peculiar spatial
arrangement of trees in our sample, which differs to
some extent from the random spatial point process
assumed in Equations (4) and (5). Indeed the distribution
of the trees in our population is not random, because
most mother trees sampled here are situated along a

North–South line, running roughly down the valley and
also close to the main wind direction (see Figures 3 and
4). Thus, this rotation allows us to assess whether the
particular orientation of the trees, relative to the main
wind direction could generate some bias. Third, to
determine how often spurious anisotropy would be
detected in the isotropic case (type-I error rate), we used
an isotropic dispersal distribution with s¼ 125 m (set to
the same average dispersal distance as for the first case).

To assess the effects of the number of mothers sampled
(nm) and of the progeny size per mother (np), we
assumed either nm¼ 31 or 62 and np¼ 20 and 40. For
nm¼ 31, we used the 31 mothers of the experimental
studies, whereas for nm¼ 62, we added 31 mothers
drawn at random (the same for all the simulations). This
simulation allowed us to determine whether accuracy
was augmented more by doubling the number of
sampled mothers or their progeny sizes.

We performed repeated simulations (1000 replicates)
for each case. For each simulated data set, we first
estimated s for the isotropic bivariate normal case, with
adult density fixed either at its observed value or
estimated jointly with the dispersal parameters. Second,
we estimated the anisotropic parameters, either setting
density at its observed value or estimating it jointly
with the dispersal parameters. For all simulations, we
computed the bias, standard deviation and the root
mean-squared error (

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
) of the estimates. Then, for

each simulated data set, we computed the ratio Ra of
major to minor axis s estimates, both with density set at
its observed value and jointly estimated with the other
parameters. We applied the simulation based testing
method to each of these simulated data sets, allowing us
to determine the proportion of cases in which anisotropy
was detected at the 5% level, both in situations where
dispersal was truly anisotropic and in situations where it
was not, to assess both type-I and type-II error rates, thus
evaluating both the power and robustness of our
treatment.

Results

Consider first the case (Table 1), for which we used
parameters similar to those estimated from the field
study (a¼ 154, smax¼ 186 m and smin¼ 42 m). The
estimates of d obtained under the assumption of isotropic
dispersal and with density set at its observed value
exhibited negative bias for all sample sizes. This bias was
constant with increasing np, but increased with increas-
ing nm, whereas the standard deviation decreased with
both np and nm, yielding an overall increase of the

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
.

When density was jointly estimated, the procedure
yielded an upward bias for d̂e, except for the largest
sampling effort (nm¼ 62 and np¼ 40). The dispersal
distance (d̂) jointly estimated with d̂e showed a negative
bias and a larger

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
than when density was fixed.

This
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
decreased when nm or np increased, with np

having the stronger impact. It reached a reasonable value
(30%) only for the largest sampling effort.

Consider now the estimates obtained under the correct
assumption of anisotropic dispersal, with density set at
its observed value. The main dispersal angle (a) was
always correctly estimated with minimal bias and MSE,
and increasing either the number of mothers (nm) or the
progeny size (np) had little effect. The estimated
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dispersal along the main axis (ŝmax) showed high
upward bias (B67%) and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
(B87%) for the lowest

sample size. Bias and
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
decreased with the sample

size, the decrease being slightly higher when nm was
doubled than when np was doubled. The dispersal along
the orthogonal axis (ŝmin) showed lower relative bias andffiffiffiffiffiffiffiffiffiffiffi

MSE
p

than ŝmax for the lowest sample sizes. However,
while these bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
decreased with increasing np

as expected, this was not the case with increasing nm,
where it remained either constant or even increased.
Thus, the relative bias was higher for ŝmin than for ŝmax

for the highest values of nm and np. As a whole, theffiffiffiffiffiffiffiffiffiffiffi
MSE

p
of the estimate of dispersal distance (d̂) always

decreased with increasing sample size, the effect being
slightly stronger for a doubled nm than for a doubled np,
as for ŝmax. The unexpected behaviour of ŝmin might be a
consequence of a trade-off, the increase of the precision
of ŝmax and d̂ being obtained in some cases at the cost of a
small loss of precision for ŝmin.

When density was estimated jointly with the dispersal
parameters, the estimates of these dispersal parameters
(ŝmax, ŝmin and â), and thus of average dispersal distance
(d̂), showed approximately twice as much bias andffiffiffiffiffiffiffiffiffiffiffi

MSE
p

as for the case where density was fixed. The
impact of an increasing nm and/or np was the same as
above. Regarding the estimated density (d̂e), it showed
quite a large

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
(B52%) for the minimal values of nm

and np, but much less than when isotropic dispersal was
assumed for the estimation. This high

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
of d̂e

decreased strongly with an increase of np, but not so
much with an increase of nm.

The simulations performed with an anisotropic dis-
persal distribution, with the same smax and smin as
before, but with a a parameter of 641, showed similar
results (Table 2), the biases and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
being higher in

some cases but lower in others.
For simulations performed with isotropic dispersal

(Table 3), isotropic estimates behaved as expected. We
observed a decrease of bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
with increasing

nm or np. When anisotropic dispersal was assumed for
estimation, so that we might anticipate dissimilar
estimates of smax and smin, there was an upward bias
for smax and thus for d, but bias decreases with
increasing progeny sample size; smin showed only
limited bias. When density was fixed, the decrease in
bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
was stronger for an increase of np than

for an increase of nm, whereas the opposite pattern
occurred when density was jointly estimated. As
expected, the estimate of a showed considerable var-
iance, which does not decrease with sample size, since
there is no particular value of a that is true in the
isotropic case.

Power of the method
Considering first the simulations where dispersal was
truly anisotropic (a¼ 1541 or 641, smax¼ 186 m and
smin¼ 42 m), we observed an increased probability of
detecting anisotropy at the 5% or the 1% level with either
increasing nm or np (Table 4). For the minimal sample
size (nm¼ 31 and np¼ 20), the probability of detecting
anisotropy was low for both values of a, whether density

Table 1 Bias, standard deviation and root mean-squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE

p
) of the various estimates of the dispersal parameters for four

combination of the number of mothers (nm) and the progeny size (np) based on field study estimates

nm–np
a Isotropic dispersal assumed Anisotropic dispersal assumed

db (%) dc (%) dd (%) smax
e (%) smin

e (%) ae de (%) df (%) smax
g (%) smin

g (%) ag (%) dg

31–20
Bias �0.7 67.5 �21.2 67.4 23.6 0.60 71.5 �14.6 74.2 22.5 �0.71 78.1
s.d. 7.4 140.5 29.2 54.5 33.9 12.87 50.8 49.7 112.8 43.0 11.31 109.8ffiffiffiffiffiffiffiffiffiffi

MSE
p

7.4 155.9 36.1 86.6 41.4 12.88 87.7 51.9 135.1 48.6 11.33 134.7

31–40
Bias 0.1 23.9 �18.8 42.2 40.5 1.54 48.5 �7.4 23.3 28.8 0.02 29.3
s.d. 4.4 57.1 17.7 25.4 21.1 7.03 22.8 27.3 24.7 23.4 4.81 23.9ffiffiffiffiffiffiffiffiffiffi

MSE
p

4.4 61.9 25.8 49.3 45.7 7.20 53.6 28.3 33.9 37.1 4.81 37.9

62–20
Bias �7.3 40.2 �28.9 35.3 32.6 3.10 41.5 �17.2 32.8 31.6 1.71 39.0
s.d. 4.6 78.7 14.9 29.0 29.2 11.28 25.2 38.2 77.2 36.8 9.40 75.4ffiffiffiffiffiffiffiffiffiffi

MSE
p

8.6 88.4 32.5 45.7 43.8 11.70 48.5 42.0 83.9 48.5 9.56 84.9

62–40
Bias �7.9 �4.1 �19.0 16.2 49.5 6.01 25.0 �29.6 18.1 56.8 6.35 27.6
s.d. 2.8 29.0 10.7 16.1 24.1 7.87 12.3 26.3 22.0 39.9 8.44 22.1ffiffiffiffiffiffiffiffiffiffi

MSE
p

8.4 29.3 21.8 22.8 55.1 9.90 27.9 39.5 28.5 69.4 10.56 35.3

Abbreviation: s.d., standard deviation.
The pollen dispersal function used is the anisotropic bivariate normal distribution, as defined in Equation (1), with parameters a¼ 1541,
smax¼ 186 m and smin¼ 42 m, and d¼ 151 m.
aProgeny size.
bPairwise estimate of dispersal distance (isotropy assumed and fixed density) in meters.
cDensity estimated jointly.
dPairwise estimate of dispersal distance (isotropy assumed and jointly estimated density) in meters.
eEstimated with fixed density.
fJointly estimated density.
gEstimated along with the density.
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Table 2 Bias, standard deviation and root mean squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE

p
) of the various estimates of the dispersal parameters for four

combination of the number of mothers (nm) and the progeny size (np) with a¼ 641

nm–np
a Isotropic dispersal assumed Anisotropic dispersal assumed

db (%) dc (%) dd (%) smax
e (%) smin

e (%) ae de (%) df (%) smax
g (%) smin

g (%) ag dg (%)

31–20
Bias �9.4 140.7 �38.5 67.1 13.4 2.40 70.6 �24.2 143.1 23.6 3.66 145.8
s.d. 5.8 169.3 39.1 51.4 36.5 12.83 46.7 51.6 217.0 77.9 15.49 211.7ffiffiffiffiffiffiffiffiffiffi

MSE
p

11.0 220.2 54.8 84.5 38.9 13.05 84.6 57.0 260.0 81.4 15.91 257.0

31–40
Bias �8.6 184.6 �51.1 86.6 �2.9 3.58 87.5 �31.3 151.4 �2.3 3.68 151.0
s.d. 3.6 106.1 9.3 28.4 15.0 3.39 26.6 35.0 164.5 15.5 3.52 160.4ffiffiffiffiffiffiffiffiffiffi

MSE
p

9.3 212.9 51.9 91.2 15.3 4.93 91.4 47.0 223.6 15.7 5.09 220.3

62–20
Bias �13.5 �39.9 2.7 13.6 34.8 8.14 20.9 �51.1 62.0 66.3 1.88 70.0
s.d. 4.2 49.9 23.8 19.4 18.1 4.62 17.1 23.6 80.5 69.3 16.46 80.2ffiffiffiffiffiffiffiffiffiffi

MSE
p

14.1 63.9 23.9 23.7 39.3 9.36 27.0 56.3 101.6 95.9 16.57 106.5

62–40
Bias �13.5 32.9 �32.3 34.4 15.3 2.49 38.7 �19.8 18.5 15.6 3.32 23.5
s.d. 2.8 62.6 13.7 21.6 14.3 3.86 19.6 20.2 19.0 15.3 3.48 18.4ffiffiffiffiffiffiffiffiffiffi

MSE
p

13.7 70.7 35.1 40.7 21.0 4.59 43.4 28.3 26.5 21.9 4.81 29.8

Abbreviation: s.d., standard deviation.
The pollen dispersal function used is the anisotropic bivariate normal distribution, as defined in Equation (1), with parameters a¼ 641,
smax¼ 186 m and smin¼ 42 m, and d¼ 151 m (same as the estimated values, except that the orientation is perpendicular).
aProgeny size.
bPairwise estimate of dispersal distance (isotropy assumed and fixed density).
cDensity estimated jointly.
dPairwise estimate of dispersal distance (isotropy assumed and jointly estimated density).
eEstimated with fixed density.
fJointly estimated density.
gEstimated along with the density.

Table 3 Bias, standard deviation and root mean squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE

p
) of the various estimates of the dispersal parameters for four

combination of the number of mothers (nm) and the progeny size (np) for isotropic dispersal

nm–np
a Isotropic dispersal assumed Anisotropic dispersal assumed

db (%) dc (%) dd (%) smax
e (%) smin

e (%) ae de (%) df (%) smax
g (%) smin

g (%) ag dg (%)

31–20
Bias 29.9 �11.8 58.4 135.4 �19.1 NAh 76.6 �46.1 410.0 11.7 NAh 262.7
s.d. 14.8 106.2 83.0 124.5 24.5 44.40 75.6 65.9 581.5 63.6 46.91 380.8ffiffiffiffiffiffiffiffiffiffi

MSE
p

33.3 106.9 101.5 183.9 31.1 NAh 107.6 80.4 711.5 64.6 NAh 462.6

31–40
Bias 23.8 �20.2 29.8 81.6 �12.3 NAh 45.1 �27.7 101.7 �4.6 NAh 60.5
s.d. 7.4 44.6 42.3 50.1 17.6 43.49 26.9 46.8 105.8 28.5 38.75 69.6ffiffiffiffiffiffiffiffiffiffi

MSE
p

24.9 49.0 51.8 95.7 21.4 NA 52.5 54.4 146.8 28.9 NAh 92.2

62–20
Bias 3.4 6.3 15.4 52.7 �24.8 NAh 18.6 �13.0 106.0 �12.6 NAh 54.3
s.d. 7.8 89.7 39.2 57.3 17.0 49.4 31.3 68.0 128.0 30.2 50.0 81.2ffiffiffiffiffiffiffiffiffiffi

MSE
p

8.5 89.9 42.1 77.9 30.1 NAh 36.4 69.2 166.2 32.8 NAh 97.7

62–40
Bias 14.6 �4.8 2.4 49.0 �9.3 NAh 26.7 �21.1 49.0 �11.7 NAh 25.6
s.d. 4.5 35.7 16.0 36.2 11.9 36.54 20.2 35.2 40.5 15.3 39.53 27.0ffiffiffiffiffiffiffiffiffiffi

MSE
p

15.3 36.1 16.2 60.9 15.1 NAh 33.5 41.1 63.6 19.3 NAh 37.2

Abbreviations: NA, not applicable; s.d., standard deviation.
The true dispersal function is the isotropic bivariate normal distribution, with s¼ 125 m, d¼ 177 m.
aProgeny size.
bPairwise estimate of dispersal distance (isotropy assumed and fixed density).
cDensity estimated jointly.
dPairwise estimate of dispersal distance (isotropy assumed and jointly estimated density).
eEstimated with fixed density.
fJointly estimated density.
gEstimated along with the density.
hNo bias and MSE could be computed here for a since the true dispersal function is isotropic and has thus no value for a.
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was fixed or jointly estimated. An increase of np yielded
generally a higher increase of the probability of detecting
anisotropy than an increase of nm. To detect anisotropy
when density was jointly estimated required substantial
amounts of data, it could only be detected in about half
of the cases when np was doubled, and it was only for the
maximal sample size (nm¼ 62 and np¼ 40) that it could
be detected in a large majority of cases. Considering
simulations with isotropic dispersal, spurious anisotropy
was usually detected in a proportion close to the
expected 5% or 1% level, for all values of nm and np.

Discussion

Anisotropy in Valley oak pollen flow
We find only a slight tendency towards anisotropy of
pollen dispersal here, despite a strong prevailing wind
direction for the region. Our estimates were non-
significant, which is consistent with our simulation
study, showing that it is quite difficult to detect
anisotropy with progeny sizes of less than 20 offspring
per mother. Also consistent with the simulation study,
we found that the standard deviations of the estimates
were low for a and smin, but much higher for smax. The
inferred main direction estimated either with fixed
density (â¼ 1541, s.d.¼ 2.631) or with density jointly
estimated (â¼ 152, s.d.¼ 7.221), was not coincident with
the main wind direction (112o). This discrepancy sug-
gests that pollen movement may be influenced by very
localized wind patterns. On the basis of the results of our
simulation study, it does not seem that the angle we
detected is a consequence of the specific spatial arrange-
ment of trees. However, if the orientation of the valley
modifies the local directionality of wind and if the spatial
heterogeneity of trees modifies the aerodynamics of
pollen movement, the angle a may not conform to the
prevailing regional wind direction. In the case of Valley
oak, we will need a larger data set to assess the angle and
standard deviation of the directionality of the pollen
flow. Increasing the number of mothers, in particular,
will probably reduce the impact of the local effects,
providing a more general trend.

As a comparison, we also evaluated anisotropy in our
study population with the NEIGHBOR method of Burczyk
et al. (1996). This method also failed to detect a significant
level of anisotropic dispersal, and the non-significant
tendency (601 from the North axis) was also quite
different from the main wind direction, again high-
lighting a need for more data. With either analysis,
however, the signal is weak and non-significant, and
neither approach indicates that pollen movement is
strongly directional in this population of valley oak.

One motivation for this study was to test whether the
subtle (and non-significant) anisotropy identified in the
adult population of Valley oak (Dutech et al., 2005) was
consistent with anisotropy in the progeny population.
For adult genotypes, the major axis of orientation was a
¼ 106.51, about 61–71 ‘off the wind.’ In that study, we
speculated that the anisotropic signal was weakened as
the seedling populations aged into adult populations.
However, we now observe for the progenies that the
pollen orientation is even further ‘off the wind.’ This
discrepancy might be the consequence of the imprecision
induced by the limited sample sizes of both the adult and
the offspring studies. Alternatively it could be caused by
specific events that have occurred during the single year
of study. Again it would be helpful to conduct a
comparative study over several years, using the same
mother trees and the same molecular markers, such as
that performed by Irwin et al. (2003) for Albizia julibrissin
or that for Sorbus torminalis by Oddou-Muratorio et al.
(2005). Unfortunately, it is quite unusual for the same set
of Q. lobata trees to produce acorns in consecutive years
owing to the masting dynamics of most oaks (for
example, Nakanishi et al., 2005), so such replications
would require a long-term study.

For the moment, we can only compare our study with
the previous study of pollen dispersal performed in this
same population (Sork et al., 2002). Assuming a normal
dispersal distribution and effective density based on the
natural population, the estimated value of d in this
previous study was of 65 m. Here, assuming a fixed
density as in this previous study, the Gaussian dispersal
mean value of d¼ 110 m, which is a bit higher than
observed in 1999 but the same order of magnitude. This

Table 4 Proportion of cases where anisotropy is detected at the 5% level (Po0.05) or the 1% level (Po0.01) in the simulated data sets for the
three assumed dispersal functions and four combination of the number of mothers (nm) and the progeny size (np), when density is either set
at its known value or jointly estimated with the dispersal parameters

Dispersal distribution nm–np Fixed density Density jointly estimated

Po0.05 (%) Po0.01 (%) Po0.05 (%) Po0.01 (%)

Anisotropy 31–20 11.40 1.10 11.60 2.90
with (a¼ 1541) 31–40 60.85 9.84 37.81 2.68

62–20 14.81 0.00 65.84 34.98
62–40 84.40 47.71 85.32 44.04

Anisotropy 31–20 26.70 1.30 25.50 11.30
with (a¼ 641) 31–40 98.24 84.00 44.96 27.84

62–20 22.81 0.92 26.73 12.44
62–40 100.00 29.94 98.80 77.25

Isotropic 31–20 2.50 0.40 7.80 1.30
dispersal 31–40 4.84 1.54 2.42 0.88

62–20 3.91 0.78 13.28 7.81
62–40 4.84 1.54 2.42 0.88
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limited difference between 1999 and 2001 might be due
either to differences in sampling (more individuals in
the centre of the population for 2001 sampling) or to
differences in intensity of pollination between the 2
years. On the basis of these 2 years, we conclude so far
that it does not appear that directional pollen flow is
biasing our estimates of pollen flow.

Detecting anisotropy and estimating its level
Our simulation study illustrates both the possibility and
the difficulty of demonstrating anisotropic pollen dis-
persal. It is possible to detect such anisotropy in pollen
dispersal if it exists, using just the genotypic data on seed
trees and their offspring, by way of TWOGENER extrac-
tion. The bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
for the dispersal parameters

(smax, smin and a) are quite high with low numbers of
offspring per mother, but they decrease readily when this
number increases. smax has higher bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
than a

and smin for low sample sizes, which means that more
data are needed to estimate that parameter well. Our
simulations show also that using the isotropic estimates
while the true dispersal is anisotropic yields a systematic
underestimation of mean dispersal distance of pollen (d).

Regarding the impact of the shape of the population, it
is interesting to note that in terms of bias and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
, and

in terms of the power to detect anisotropy, our estimates
performed about equally well with a major axis of pollen
dispersal that parallels the main axis of distribution for
the population (along Figueroa Creek) or orthogonal to it
(across the Valley). So, we can conclude that this method
is reasonably robust in detecting a predominant direction
of pollination, even if the adult trees are preferentially
distributed along a divergent axis. Moreover, our method
is unlikely to detect excessive and spurious anisotropy
when the true dispersal curve is isotropic. Because the
percentage of these cases of spurious anisotropy detected
(B10%) is a bit higher than the 5% expected by chance,
an anisotropic signal that would just be detected at or
close to the 5% level should be considered with caution.

The progeny sample size needed to provide sufficient
power depends on the strength of anisotropy, the degree
of polymorphism of the genetic markers and the array of
spatial positions occupied by the mothers, but if only
B30 mothers are considered, at least 40 offspring each
will be necessary to have a reasonable chance of
detecting anisotropy (see Table 4). Unlike the situation
for isotropic dispersal (Austerlitz and Smouse, 2002),
increasing the number of mothers is, in most cases, less
efficient than increasing the number of offspring. This
may stem from the fact that, with a limited number of
offspring, the fij values may, by chance, be elevated in
one particular direction, yielding spurious anisotropy in
the simulations performed under the isotropic model to
obtain the null distribution, thus reducing the power to
detect this anisotropy. Additional simulations will be
needed to explore the sampling aspects more thoroughly.

Sample sizes for anisotropic analyses should be very
large if the effective density is jointly estimated. The
simulations performed here demonstrated that it is
preferable for the investigator to provide some indepen-
dent estimate of effective density, because it is much
easier – especially for low sample sizes – to detect
anisotropy when effective density is fixed. The trouble is
that this estimate might be difficult to obtain, since many

factors, such as spatial aggregation of the adults,
phenological differences and differences in male fertility
(see Meagher and Vassiliadis, 2003; Oddou-Muratorio
et al., 2005), will affect the ratio of effective to observed
density. Some effort to gain more information on these
other factors would be quite valuable. Alternatively, it is
possible to use the observed density or the density
estimated under the isotropic model, with the caveat that
the detection of the angle will have more power, but
dispersal distance may be underestimated.

Another important issue concerns the family of
dispersal curve assumed. Here, we assumed a bivariate
normal pollen dispersal distribution for the sake of
mathematical tractability. We have shown elsewhere that
fat-tailed curves are more realistic in natural populations
(Austerlitz et al., 2004). No closed-form analytical
formulae are available for the fij for such curves, so
while the results can be computed numerically, the
methods are elaborate and computer-intensive, due to
the number of parameters to be estimated for the
anisotropic case (four or five, depending on whether
density is or is not estimated jointly). Such methods
will need further development in future work. Since
our prime interest here is in detecting anisotropy,
assuming that dispersal is normal might not be a bad
place to start.

This extension of the TWOGENER modelling approach
provides a promising avenue for the estimation of the
degree of anisotropy in plant populations where direc-
tionality of pollen movement is a concern. This method
differs substantially from the Neighborhood model that
includes distance and directionality in modelling pollen
flow (for example, Burczyk et al., 1996). The Neighbor-
hood model essentially uses a parentage approach to
identify pollen donors, and like all parentage ap-
proaches, relies on access to the genotypes of all potential
pollen donors within a proscribed area around focal seed
parents (Smouse and Sork, 2004). The Neighborhood
model provides an estimate of the angle of directionality
of pollen movement from pollen source to pollen
recipient, whereas this TwoGener treatment provides
the angle, but without respect to directionality, so
treatment of the angular displacement is antisymmetric.
Another difference in the two methods is that Neigh-
bourhood model uses likelihood ratio criteria, which can
be tested either with a w2 approximation or a permuta-
tional procedure. The choice of methods must depend on
the sampling design and the availability of paternal
genotypes.

In conclusion, we have shown here that it is clearly
feasible (with appropriate experimental designs) to
detect anisotropy in pollen dispersal in natural popula-
tions, using a TWOGENER extraction. Our simulations
indicate the need for greater replication, both within and
among mothers, than provided with this particular data
set. Our main objective here was to introduce a formal
methodology. We have begun, with some limited
simulations, to provide some hints concerning better
sampling strategies, but this matter should be the subject
of a specific study in the future. Detecting anisotropy is,
in any case, a matter of some importance. Indeed, we
show here that neglecting anisotropy yields an under-
estimate of the mean dispersal distance and an even
greater underestimate of dispersal distance along the
main axis.
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