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Abstract

DNA methylation in plants affects transposon silencing, transcriptional regulation and

thus phenotypic variation. One unanswered question is whether DNA methylation

could be involved in local adaptation of plant populations to their environments. If

methylation alters phenotypes to improve plant response to the environment, then

methylation sites or the genes that affect them could be a target of natural selection.

Using reduced-representation bisulphite sequencing (RRBS) data, we assessed whether

climate is associated with variation in DNA methylation levels among 58 naturally

occurring, and species-wide samples of valley oak (Quercus lobata) collected across cli-

mate gradients. We identified the genomic context of these variants referencing a new

draft valley oak genome sequence. Methylation data were obtained for 341 107 cytosi-

nes, of which we deemed 57 488 as single-methylation variants (SMVs), found in the

CG, CHG and CHH sequence contexts. Environmental association analyses revealed 43

specific SMVs that are significantly associated with any of four climate variables, the

majority of which are associated with mean maximum temperature. The 43 climate-

associated SMVs tend to occur in or near genes, several of which have known involve-

ment in plant response to environment. Multivariate analyses show that climate and

spatial variables explain more overall variance in CG-SMVs among individuals than

in SNPs, CHG-SMVs or CHH-SMVs. Together, these results from natural oak popula-

tions provide initial evidence for a role of CG methylation in locally adaptive evolu-

tion or plasticity in plant response.
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Introduction

DNA (cytosine) methylation may play an important role

in transposon silencing, transcriptional regulation and

cell differentiation and consequently shapes the pheno-

types of organisms (Zilberman et al. 2007; Cokus et al.

2008; Law & Jacobsen 2010; Duncan et al. 2014;

Eichten et al. 2014; Schmitz 2014; Widman et al. 2014).

Foundational work in Arabidopsis thaliana and other

plants demonstrates that levels of DNA methylation at

sites throughout the genome vary substantially among

individuals and populations (Herrera & Bazaga 2010;

Schmitz et al. 2013). Active debate surrounds the ques-

tion of whether (and to what extent) this epigenetic

variation could be involved in local adaptation, either

as a mechanism acting independently of genetic varia-

tion or as an intermediary through which genetic varia-
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tion can affect phenotype (Grossniklaus et al. 2013; Cor-

tijo et al. 2014; Dubin et al. 2015). Furthermore, some

methylation polymorphism can be induced under envi-

ronmental stress and may or may not be inherited in

subsequent generations, offering potential mechanisms

for phenotypic plasticity or Lamarckian evolution

(Jablonka & Raz 2009; Verhoeven et al. 2010; Verhoeven

& van Gurp 2012; Duncan et al. 2014). Moreover, in

plants, many DNA methylation patterns appear to be

heritable, but the nature and stability of the heritability

across generations is not well established (Schmitz et al.

2011; Becker & Weigel 2012; Chodavarapu et al. 2012;

Grossniklaus et al. 2013; Zhang et al. 2013; Wilschut

et al. 2015).

The potential role of DNA methylation as an epige-

netic mechanism involved in either local adaptation or

plasticity is an area of growing interest in natural con-

texts because of its implications for understanding

short-term responses to environmental change as well

as long-term evolution (Bossdorf et al. 2008; Franks &

Hoffmann 2012; Liu 2013; van der Graaf et al. 2015).

Because DNA methylation state has a substantially

higher mutation rate than DNA sequences (Jablonka &

Raz 2009; Becker et al. 2011; Schmitz et al. 2011), it may

provide a particularly useful mechanism for generating

phenotypic variation that would allow a more rapid

response to environmental change than would genetic

mechanisms (Liu 2013). Multiple studies suggest that

methylation can be induced by the local environment

(Verhoeven et al. 2010; Uthup et al. 2011; Herrera &

Bazaga 2013; Rico et al. 2014; Yakovlev et al. 2014). In

principle, locally adapted phenotypes emerge more

quickly and populations adapt more rapidly when both

epigenetic and genetic variations are acted upon by nat-

ural selection compared to when only genetic variation

is involved (Klironomos et al. 2013; Kronholm & Collins

2015).

Studies of methylation variation in natural popula-

tions and its relation to environmental factors can pro-

vide valuable information on these and other topics.

Several ecological studies have found associations

between variation in DNA methylation with herbivory

(Herrera & Bazaga 2011; Holeski et al. 2012), climate

stress (Verhoeven et al. 2010; Dowen et al. 2012; Rico

et al. 2014; Nicotra et al. 2015) as well as other environ-

mental factors that differ among populations (Foust

et al. 2013, 2016). Furthermore, evidence from Norway

spruce suggests that epigenetic regulation affects phe-

notypes that can be important in local adaptation, such

as flowering time and climate adaptation (Yakovlev

et al. 2011, 2012). Because many of these studies gener-

ated their evidence using methylation-sensitive AFLP

(MSAP) loci or other methods that do not provide the

genomic sequence context of the methylation patterns,

they do not allow the association of methylation vari-

ants with specific genes and thus do not provide the

potential mechanism of their involvement in adaptation.

As it is now feasible to create a draft genome sequence

for nonmodel species, ecological studies of the associa-

tion between epigenetics and environment will benefit

from a genomic sequencing approach that identifies the

locations of methylation sites and the genes that sur-

round them.

A recent whole-epigenome bisulphite sequencing

study of local adaptation in natural Swedish accessions

of Arabidopsis revealed the potential power of under-

standing DNA methylation in its genomic context

(Dubin et al. 2015). This study showed that methylation

in the CHH sequence context (where H is A, C or T) is

significantly associated with greenhouse temperature

and that these variants are primarily found in trans-

posons and related to transposon silencing. This varia-

tion was shown to have an underlying genetic basis,

especially due to a single previously known gene in

trans (Shen et al. 2014). Conversely, they reported that

methylation in the CG context is largely found in genes,

variable among accessions, correlated strongly with lati-

tude and climate variables, positively correlated with

expression of those genes and, in some cases, geneti-

cally based. These results and others suggest that gene

body CG methylation variation could be associated with

local adaptation by natural selection, either directly or

through underlying genetic variation, even though its

relationship with phenotype is not well understood

(Schmitz et al. 2013; Dubin et al. 2015; Wang et al. 2015).

In contrast, CHG methylation was not shown to be sen-

sitive to growing conditions and exhibited only modest

correlations with environmental variables. These find-

ings are consistent with known differences in the bio-

chemical pathways that maintain methylation in these

three different contexts in plants (Law & Jacobsen

2010), as well as previously reported roles of different

DNA methylation types in transposons versus genes

(Zilberman et al. 2007; Cokus et al. 2008; Takuno & Gaut

2012).

A detailed investigation of the role of DNA methyla-

tion in response to climate variation is of particular

interest in long-lived trees because their long generation

time limits the ability of populations to respond to

rapid environmental changes through genetic mecha-

nisms (Franks & Hoffmann 2012; Br€autigam et al. 2013).

To explore whether DNA methylation might be a mech-

anism of tree response to the environment, we initiated

a landscape epigenomics study of methylation in valley

oak (Quercus lobata), a long-lived California endemic

tree species with a genome size of ~800 Mb (Plomion

et al. 2016; V.L. Sork, S. Fitz-Gibbon, M.W. Crepau, P.F.

Gugger, C.H. Langley, M. Pellegrini, D. Puiu & S.L.
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Salzberg, unpublished data). Our previous work

showed that CG single-methylation variants (CG-SMVs,

also referred to as single-methylation polymorphisms,

SMPs) are unusually differentiated among three popula-

tions, more so than the average SNP or CHG-SMV

(Platt et al. 2015). As a result, we concluded that

CG-SMVs are more likely to be associated with local

adaptation than CHG methylation variants, as reported

for Arabidopsis (Schmitz et al. 2013; Dubin et al. 2015).

The findings of that previous study provide compelling

evidence based on population differentiation, but they

do not address which environmental selective pressure

is driving these differences. If climate were the driving

force, we would expect that some methylation variants

should be strongly associated with climate gradients,

after factoring out the population or kinship structure.

Furthermore, if CG-SMVs are generally more important

in climate adaptation, we hypothesize that CG-SMVs

will show stronger overall associations with climate gra-

dients on the landscape than other types of SMVs and

SNPs.

In this study, we assess the extent to which DNA

methylation is associated with climate in valley oak

using reduced-representation bisulphite sequencing

(RRBS) informed by a valley oak draft reference gen-

ome sequence, Version 0.5 (V.L. Sork, S. Fitz-Gibbon,

M.W. Crepau, P.F. Gugger, C.H. Langley, M. Pellegrini,

D. Puiu & S.L. Salzberg, unpublished data) and an

annotated reference transcriptome (Cokus et al. 2015).

By sampling individuals across the species range that

includes diverse climate environments, we assess the

opportunity for local adaptation in natural populations

through four specific objectives. First, we describe the

patterns of methylation composition and distribution

across the genome, focusing on different contexts of

DNA methylation. Second, we conduct an environmen-

tal association (outlier) analysis of CG, CHG and CHH

methylation levels with climate gradients to test the

prediction that climate is a driving force in population

differentiation and local adaptation. Third, we assess

the general importance of CG methylation and identify

which climate variables are most associated with

methylation variation through multivariate association

analyses of each CG, CHG and CHH methylation levels

and SNP allele frequencies with climate variables.

Fourth, we explore the genomic context of climate-asso-

ciated SMVs to determine the position of these SMVs

relative to genes whose expression may be associated

with methylation. Despite the potential benefits to rapid

response to environmental change offered by methyla-

tion, this study is among the first to test for evidence of

epigenetically based adaptation to environment and

determine potential genes that are mediating the pheno-

type in natural populations of a long-lived tree.

Methods

Study system

Valley oak, Quercus lobata N�ee (Fagaceae), is a wide-

spread endemic oak of California occurring along the

foothills of the Coastal and Sierra Nevada ranges

(Fig. 1). In contrast to oak species in eastern North

America and Europe that went through recent post-

glacial expansion, valley oak’s distribution lies in a

nonglaciated region of California and has likely

remained stable through recent glacial cycles, leading

to high local genetic diversity, associations of genetic

variation with climate variables, and a strong poten-

tial for local adaptation to environment (Grivet et al.

2006; Sork et al. 2010, 2016; Gugger et al. 2013). Our

previous work on epigenetic variation across three

populations provides evidence that CG methylation

could be either a marker for loci involved in local

adaptation or directly involved in local adaptation

(Platt et al. 2015).

Sampling

During October 2012, we sampled mature leaves from

Quercus lobata at each of 58 localities spread throughout

its entire distribution, ensuring sampling of the entire

climate gradient (Fig. 1; Table S1, Supporting informa-

tion). Because we wanted to maximize the range of cli-

mate environments in our study, we sampled only one

individual from each site, which is sufficient for the

regression-type analyses of this study.

Library preparation

We extracted total genomic DNA from the leaves using

a prewash protocol (Li et al. 2007; Gaddis et al. 2014)

followed by Qiagen DNeasy Plant extraction kits.

Reduced-representation bisulphite sequencing (RRBS)

libraries were prepared following methods established

in the Pellegrini Lab, which are modifications of the

protocol of Feng et al. (2011). Briefly, total genomic

DNA was digested with MspI (CCGG) and then end-

repaired and adenylated with Klenow fragment (30 to 50

exo�). Unique Illumina TruSeq adapters were ligated to

fragments in each library. We targeted fragments of

200–500 bp (including ~120 bp of adapter sequence)

using AMPureXP bead-based size selection. Libraries

were treated with sodium bisulphite (EpiTect, Qiagen)

to convert unmethylated cytosines to uracil, which are

read as thymine during sequencing. The resulting 58

reduced-representation libraries were amplified by PCR

with Illumina primers, pooled in batches of 12 and sin-

gle-end, 100 bp sequenced in 5 lanes within the same
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flow cell of an Illumina HiSeq 2000 v3 according to the

standard Illumina protocol.

SMV and SNP calling

Illumina reads were filtered to remove those failing the

Illumina chastity test, converted from QSEQ to FASTQ

format applying EAMSS quality score correction and

demultiplexed by sample. Each sample was then anal-

ysed with BS-SEEKER2 (Guo et al. 2013) to measure cyto-

sine methylation in CG, CHG and CHH contexts.

Specifically, we ran BS-SEEKER2 with the BOWTIE 2-2.2.5

aligner against a draft valley oak reference genome (Val-

leyOak0.5) that has haplotypes collapsed (S. Fitz-Gibbon,

D. Puiu, P.F. Gugger & V.L. Sork, unpublished data; Sork

et al. in prep.), which was indexed with a fragment size

range of 100–480 bp (sequences are publicly available

through NCBI PRJNA308314 and through http://val-

leyoak.ucla.edu). Other settings were left at their

defaults, except that reads were aligned end to end after

trimming adapter sequence, up to five mismatches were

allowed, and methylation calls were only retained for

cytosines with at least 109 coverage.

The resulting cytosines with methylation calls were fil-

tered to include only those with less than 10% missing

data across the 58 trees and that were considered variable

across samples. Unlike SNPs, which are given by discrete

nucleotide calls, methylation levels are measured as con-

tinuous values that capture the fraction of methylation at

a site (representing the fraction of cells containing methy-

lation at a locus). We defined single-methylation variants

(SMVs) as those with a 10% minimum range of variation

in per cent methylation across samples. We additionally

truncated individual per cent methylation calls that were

deemed outliers. Specifically, we defined a range based

on the 10th and 90th percentiles and considered outliers

those that were 1.5 times more extreme than those values.

These outliers were converted to the cut-off values them-

selves, resulting in ‘winsorized’ data. Linear models are

sensitive to outliers (i.e. potentially high-leverage points),

and thus, we did this to minimize the false-positive rate

of associations.

Because RRBS generates sequences, we are able to

also call SNPs for contexts that are not confounded with

potential cytosine methylation. Target genomic intervals

for variant calling were identified using CallableLoci

in GATK 3.3 (McKenna et al. 2010). To avoid spurious

calls at the edges of the RRBS target regions, the target

intervals were trimmed by three bases on each end.

BWA-METH 0.10 (Pederson et al. 2014) was used to align

the reads for input to BIS-SNP (Liu et al. 2012). BIS-

SNP’s BisulfiteGenotyper was run with the follow-

ing parameters: -stand_call_conf 4 -stand_e-

mit_conf 0 –maximum_read_cov 100000 –mm40 10

–trim5 2 –trim3 2 –mmq 10 –mbq 15 –useBAQ.
GATK’s VariantFiltration and SelectVariants

were used to remove calls for sites with low depth of

coverage (DP < 4), restrict to diallelic sites and filter

variants based on the following GATK variant annota-

tion cut-offs, QD < 2.0, MQ < 40.0, MQRankSum <
�12.5, ReadPosRankSum < �8.0 and AF < 0.1.

Genomic context of SMVs and SNPs

We identified the genomic context for each variant

based on our draft genome sequence (S. Fitz-Gibbon, D.

Puiu, P.F. Gugger & V.L. Sork, unpublished data) and

our published transcriptome assembly (Cokus et al.

2015). As we do not yet have a carefully annotated gen-

ome sequence, we used BLASTX against the NCBI

nonredundant database to identify genes in and around

regions with climate-associated SMVs. Only matches

with compelling evidence of homology were kept, as

indicated in the expect score and per cent matched.

To identify genomewide patterns of SMV contexts,

we used our transcriptome assembly to produce a con-

servative set of gene annotations on our draft genome,

which allowed us to compare frequencies of genic ver-

sus intergenic SMVs and estimate frequencies around

transcription start sites. Specifically, from the 83 644

transcriptome contigs in our published transcriptome

assembly, we identified 13 159 high-quality contigs by

0 100 200 km50

Fig. 1 Map of sample sites (red points) in relation to the distri-

bution of valley oak (blue) and topography (grey scale).
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requiring that the annotation included UTRs, start and

stop codons and no introns. These 13 159 transcriptome

contigs were mapped to the 40 158 contigs from our

draft genome assembly with Gmap –-batch 5 (Wu &

Watanabe 2005). Alignments for the 12 599 transcrip-

tome contigs with matches were refined by passing

pairs of transcriptome contigs and their matching geno-

mic regions, plus and minus 50 kb, to SIM4DB (Walenz &

Florea 2011) with default parameters. Of the resulting

alignments, 7956 transcriptome contigs were deter-

mined to have full-length matches to the genomic con-

tigs, which were the only annotations kept for

subsequent use. Thus, our transcriptome-based annota-

tion of the genome covers only a fraction of the true

number of genes; however, it is a high-confidence

subset. Locations of methylation sites with respect to

annotated gene models were determined using the

count function of SNPEFF 4.1k (Cingolani et al. 2012).

Patterns of methylation and density of Cs and RRBS

fragments around transcription start sites were deter-

mined using a slightly smaller subset of 5799 gene

annotations for which the direction of coding (based on

observed splice signals) had been determined by SIM4DB.

BEDTOOLS 2.19.1 (Quinlan & Hall 2010) was used to facili-

tate creation of sliding windows around the transcrip-

tion start sites as well as for counting intersecting data.

Climate association analyses

To identify specific SMVs that have significant associa-

tions with the climate, which could be indicative of nat-

ural selection or a strong influence of climate on natural

variation at that locus (Yoder et al. 2014; Gugger et al.

in press), we used linear mixed models implemented in

PYLMM (http://genetics.cs.ucla.edu/pylmm/in-

dex.html). PYLMM implements the same model as pop-

ular software for linear mixed models, such as EMMAX

(Kang et al. 2010), but the input formats are not

restricted to those of SNP data. These tests adjust for

pairwise relatedness, which is the correlation structure

among samples, using a kinship matrix estimated from

the data (Kang et al. 2008; Sul & Eskin 2013) and then

analyse individual SMVs for significant associations

with climate variables. We used the methylation data to

estimate the kinship matrix because we determined that

it captures the relatedness of individuals and controls

the rate of false positives better than using the SNP data

for estimating kinship. As evidence, we present QQ

plots demonstrating an inflated number of significant

tests when using SNPs rather than methylation to esti-

mate kinship (Fig. S1, Supporting information). Further-

more, all of the SMVs shown to be significant using

SMV-based kinship are also the most highly significant

when using SNP-based kinship (Fig. S2, Supporting

information). Similar observations have been reported

in other contexts and are attributed to underlying asso-

ciation of methylation variation with genetic variation,

as well as the better statistical properties of using the

same data type for the correlation matrix and depen-

dent variables (Orozco et al. 2015). Loci with >10%
missing data were excluded from the PYLMM analyses,

and only sufficiently variable loci (SMVs), as defined

above, were included in the analysis to minimize false

positives. Furthermore, we adjusted P-values to Q-values

using the false discovery rate method (Storey & Tibshi-

rani 2003) to account for multiple testing, as implemented

in the R package QVALUE 2. For these analyses, we consid-

ered four climate variables with generally low-to-moder-

ate correlations among each other that are thought to be

important in shaping valley oak’s geographic distribu-

tion and patterns of genetic variation (Sork et al. 2010;

McLaughlin & Zavaleta 2012; Gugger et al. 2013): climatic

water deficit (CWD; an integrated measure of water

availability or stress considering rainfall, evapotranspira-

tion and basin hydrology), mean minimum temperature

of the coldest month (Tmin) and mean maximum temper-

ature of the warmest month (Tmax) from 1950 to 1980

averages from the 270-m resolution California Basin

Characterization Model (Flint et al. 2013), as well as

growing season growing degree-days above 5°C
(GSDD5) from a spline model of climate developed by

the U.S. Forest Service (Rehfeldt 2006) as a measure of

energy input available for tree growth.

In a parallel analysis to assess the overall association

of different classes of SMVs and SNPs with climate on

the landscape, we used a multivariate method

called redundancy analysis (RDA), as implemented in

VEGAN 2.3 (Oksanen et al. 2015) in R 3.1.2 (R Core Devel-

opment). RDA is a constrained ordination method

analogous to linear regression for cases that have multi-

ple-dependent variables (SMVs) and multiple-indepen-

dent variables (climate and spatial variables). We used

it to test and quantify the overall contribution of climate

and spatial variables to different types of cytosine

methylation, including only sites without any missing

data. The analysis was performed separately for each

SMV context and for SNPs. Permutation tests with 999

permutations were used to assess the significance of the

associations. Spatial variables included longitude (x),

latitude (y) and elevation (z).

Results

DNA methylation and its sequence context

We obtained methylation data for 1.47 M cytosines

spread across approximately 36 k RRBS fragments, of

which 341 107 cytosines had less than 10% missing
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data, and were mostly in the CHH context, followed by

CG and CHG (Table 1). Methylation data are enriched

near transcription start sites, in part because RRBS pref-

erentially samples these regions (Figs S3 and S4, Sup-

porting information). As is commonly seen in

eukaryotic genomes, there is a spike in the number of

CG sites around the transcription start sites and a dip

in the average methylation level of these sites (Fig. S3,

Supporting information). The spike in C density is also

seen for CHG and CHH sites; however, the dip in aver-

age methylation is much less pronounced for those con-

texts. 12.5% of CG, CHG and CHH sites occur in genic

regions, including exons, introns, 1 kb upstream and

1 kb downstream (Fig. S5, Supporting information).

Methylation levels in all contexts are strongly skewed

towards zero, but CG methylation is often found close

to 100% (Fig. 2).

After selecting only SMVs with less than 10% missing

data and defined by a 10% minimum range of variation,

26 286 CG-SMVs, 9758 CHG-SMVs and 21 404 CHH-

SMVs remained for use in subsequent analyses

(Table 1). We observed 18% of CG-SMVs, 10% of CHG-

SMVs and 6% of CHH-SMVs fall within genes, suggest-

ing genic enrichment of CG-SMVs compared to other

SMV classes and all methylation sites (Fig. S5, Support-

ing inforamtion). These numbers are low due to our

conservative mapping with only the most confident

gene models. CG-SMV sites exhibit a bimodal distribu-

tion of methylation levels among loci, with peaks

towards 0 and 100% methylation (Fig. 2). CHG-SMV

sites are far more skewed towards zero methylation but

have some sites with 100% methylation. CHH-SMVs

have mostly low levels of methylation. There is little

variation in these distributions among samples, and

truncating the values of outliers had no discernible

effect on these distributions (not shown). In addition,

we identified 1810 total high-confidence SNPs with less

than 10% missing data (1394 with complete data).

Climate associations

Linear mixed models revealed 43 SMVs significantly

associated with climate variables after accounting for

kinship structure and multiple testing (Q < 0.1)

(Table 2). A total of 38 of the 43 are significant associa-

tions between CG-SMVs and Tmax (Fig. 3) and come

from 19 RRBS fragments (Tables 2 and 3). Just three

fragments account for nearly half of these CG-SMVs,

which we highlight in regression plots and maps with

Tmax (Fig. 4). In one case, 9 CG-SMVs from a single

100-bp fragment (scaffold20751.23308, which is named

in the format, contig.position) are significantly associ-

ated with Tmax (Figs. 4 and 5). In all but one fragment

where a CG-SMV is significant, other SMVs (especially

CHG and CHH) in that fragment are not significant.

One fragment has a CG-SMV, CHG-SMV and CHH-

SMV significantly associated with Tmax (Fig. 4). Methy-

lation levels at sites within the same RRBS fragment

have low-to-moderate correlations, with mean of 0.19

and range of 0.07–0.36 across contexts (Table S2, Sup-

porting information; e.g. Fig. 5).

RDAs show that CG-SMVs and CHG-SMVs are sig-

nificantly associated with climate and spatial variables

(P < 0.001) (Table 4; Fig. S6, Supporting information). In

contrast, CHH-SMVs are not significantly associated

with climate and spatial variables (P = 0.23), even when

the outlying individual (SW786) whose CHH methyla-

tion is unusually low is removed from the analysis

(P = 0.07). The amount of variance explained by climate

and spatial variables is higher for CG-SMVs (14.4%)

Table 1 Number and per cent of sites with methylation data

by sequence context and the subset of those that are at least

10% variable among individuals (i.e. SMVs)

Methylation

context

Sites (<10%
missing data)

Per cent

of total SMVs

Per cent

of total

CG 65 203 19 26 286 46

CHG 50 658 15 9758 17

CHH 225 246 66 21 404 37

Total 341 107 57 448

(a) (b) Fig. 2 Violin plots showing patterns of

methylation levels of CG, CHG and

CHH sites for (a) all cytosines with less

than 10% missing data and (b) the subset

of those with at least 10% variance

among samples (i.e. SMVs). White dots

represent median methylation level, and

thick black bars represent the interquar-

tile range. Mean methylation levels (not

shown) reflect the greater number of

highly methylated sites in CG-SMVs:

CG = 0.38, CHG = 0.29, CHH = 0.11.
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than for SNPs (13.3%) or for CHG-SMVs (13.6%) and

CHH-SMVs (12.8%, not significant; Table 4).

Consistent with our single-site analyses, the RDA

shows that Tmax is most strongly associated with the

first RDA axis; however, GSDD5 and CWD also have

strong associations with one or both of the first two

axes (Table 5). In contrast, the SNP RDA axes are more

strongly associated with spatial variables and GSDD5

(P < 0.001).

Genomic context of climate-associated SMVs and
nearby genes

The 43 climate-associated SMVs are enriched in or

near genes (49%), even beyond the underlying enrich-

ment of CG-SMVs in genic regions (24%; Fig. S5, Sup-

porting information; hypergeometric test: P = 0.0002).

As inferred from our draft genome sequence, 15 of 43

climate-associated SMVs are found within coding

sequences (Table 3). Another 7 are within 1 kb of

coding regions, and only 5 are more than 2.5 kb from

detected coding regions. All of the climate-associated

SMVs within 2.5 kb of coding regions are down-

stream.

The genes found to be near the SMVs with significant

climate association include several thought to have a

role in environmental stress response or adaptation

(Table 3). For example, scaffold20751.23308, which con-

tains nine methylated sites, is found in a coding

sequence whose protein product has 60% identity to

dehydration-responsive element-binding protein 1A

found in the woody plants Jatropha and Populus with

functional annotation from Oryza sativa and Arabidopsis

(Okamuro et al. 1997; Dubouzet et al. 2003).

Discussion

Methylation patterns in species-wide valley oak sam-

ples provide evidence of response to climate and poten-

tial involvement in local adaptation. Our evidence is

Table 2 Summary of number of SMVs (number of fragments

in parentheses) with significant environmental associations

(Q < 0.1) for each climate variable investigated with linear

mixed models

Methylation context

Number of significant tests by climate

variable

CWD1 Tmin
2 Tmax

3 GSDD54

CG 1 38 (19)

CHG 1 1

CHH 1 1

1CWD = climatic water deficit.
2Tmin = mean minimum temperature of the coldest month.
3Tmax = mean maximum temperature of the warmest month.
4GSDD5 = growing season degree-days above 5°C.
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Fig. 3 Manhattan plots showing the �logP of a correlation between each single-methylation variant (SMV) (rows) and climate vari-

ables (columns): CWD, climatic water deficit; GSDD5, growing season degree-days above 5°C; Tmax, mean maximum temperature of

the warmest month; and Tmin, mean minimum temperature of the coldest month. Black-filled points are statistically significant (Q <
0.1) after adjusting for multiple testing using the false discovery rate method. SMVs are arranged along the x-axes by contig (largest

to smallest) and then by position within contig, following the draft genome sequence ordering.
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based on several significant associations with climate

gradients, in particular for CG-SMVs and the climate

variable, Tmax. Most of these climate-associated CG-

SMVs are within or proximal to specific genes, suggest-

ing a potential epigenetic mechanism associated with

the expression of those genes (Wang et al. 2015). These

findings provide support for climate as a force driving

the high levels of differentiation of CG-SMVs among

three populations of valley oak (Platt et al. 2015). In

addition, the fact that several of our significant climate-

associated SMVs are found in gene bodies is consistent

with recent work in Arabidopsis showing that gene body

CG methylation is functionally important (Takuno &

Gaut 2012) and may be involved in local adaptation,

either directly or through underlying genetic

mechanisms (Dubin et al. 2015). Our study joins others

in demonstrating that methylation levels differ among

naturally occurring plants in different environments

(e.g. Herrera & Bazaga 2010; Foust et al. 2013), and fur-

ther offers a genomic context for this methylation, sug-

gesting its connection to local adaptation or tree

response to temperature variation.

Patterns of methylation across the genome

Cytosine methylation occurs with different frequencies in

CG, CHG and CHH contexts, and these frequencies in

valley oak are generally similar to those found in Ara-

bidopsis (Cokus et al. 2008; Schmitz et al. 2013). For exam-

ple, Schmitz et al. (2013) report 23%, 13% and 64% of

methylated cytosines were CG, CHG and CHH, respec-

tively, in comparison with our values of 19%, 15% and

66% (Table 1). When restricting to SMVs, defined as sites

whose methylation is variable across individuals, we

observe that most sites occur in the CG context (46% vs

17% for CHG and 37% for CHH; Table 1), which tend to

have a more bimodal methylation distribution than CHG

or CHH sites (Fig. 2), similar to Arabidopsis (Dubin et al.

2015). This high variation in CG-SMVs among samples

establishes the potential for its involvement in pheno-

typic differences among individuals. In contrast, CHH-

SMVs are more likely to be unmethylated across all sam-

ples, and CHG-SMVs are intermediate (Fig. 2), suggest-

ing these classes are less likely to be involved in

phenotypic differences among individuals. These pat-

(e) (f) (g) (h)

(a) (b) (c) (d)

Fig. 4 Four examples of RRBS fragments with significant SMV–climate associations from mixed model regression in PYLMM. (a–d)
Regression plots of mean level of methylation across methylated sites within RRBS fragments versus mean maximum temperature of

the warmest month (Tmax) (black = CG, grey = CHG, open with dotted trend line = CHH). The number of SMVs that were averaged

is in parentheses. (e–h) Maps showing the methylation levels per sample (pie charts) in relation to mean maximum temperature

(Tmax; background colour) for the same four examples.

© 2016 John Wiley & Sons Ltd
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(a) (b)

Fig. 5 Methylation levels (grey scale) of (a) nine CG-SMVs from scaffold20751.23308 shown for all samples sorted from high to low

Tmax and shown in their genic context, which is putatively, dehydration-responsive element-binding gene. (b) Similar plot for six

CG-SMVs from Locus C2687893 that are intergenic and located 400 bp downstream of a voltage-gated anion channel mitochondrial

outer membrane protein. Plots created with METHYLATION PLOTTER (Mallona et al. 2014).
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terns are consistent with those observed in an earlier

study on three valley oak populations sampled at a smal-

ler spatial scale and using different methods to call

methylation (Platt et al. 2015).

Climate association with DNA methylation levels

To determine whether climate could be a driver in the

previously reported population differentiation at CG

sites (Platt et al. 2015), we tested the hypothesis that

specific SMVs are significantly associated with climate

on the landscape. We found that 43 SMVs (from 22

RRBS fragments) are significantly associated with cli-

mate variables (Table 3; Fig 3), consistent with their

potential role in local adaptation to climate or their

plastic response to local climate conditions. Almost all

of these variants are CG-SMVs significantly associated

with Tmax, leading to the hypothesis that temperature

stress is a selective force or modifying force on CG

methylation levels among individuals. The unique geo-

graphic patterns of climate-associated SMVs from a

sample of different RRBS fragments (Fig. 4) indicate

that these forces likely operate independently on differ-

ent loci.

A notable result is that most significant tests are for

associations with maximum temperate (Tables 2 and 3),

raising the question of whether temperature is simply a

key selective pressure of the local climate environment

on CG-SMVs, or whether it is more likely to induce

CG-SMV methylation. This finding contrasts with simi-

lar analyses in valley oak of SNPs from genes where

mean annual precipitation and growing degree-days

above 5°C were more important than maximum tem-

perature (Sork et al. 2016; Gugger et al. in press). A

potential cause of strong temperature association is that

individual plants acquire CG methylation in response

to local temperature conditions during development.

For example, temperature can induce epigenetic differ-

entiation during embryogenesis, although the genomic

context was not reported (Yakovlev et al. 2014).

However, research in Arabidopsis suggests that CG

methylation is more likely to be generated by sponta-

neous mutation (Becker et al. 2011; Hagmann et al.

2015), while CHH methylation is more likely to be

induced by growing conditions during development

and may be mostly reset each generation (Dubin et al.

2015). RNA-directed DNA methylation (RdDM) related

to transposon silencing can also be temperature sensi-

tive, leading to methylation in all sequence contexts in

a given locus (Matzke & Mosher 2014). However, most

of the RRBS fragments with significant CG-SMVs do

not have adjacent, significant non-CG-SMVs, arguing

against RdDM temperature sensitivity as the cause.

Finally, there is growing evidence that natural selection

can act on DNA methylation, especially CG-SMVs (van

der Graaf et al. 2015), raising the possibility that tem-

perature associations are due to local adaptation. In this

study, it is difficult to determine the reason that maxi-

mum temperature is most often associated with CG-

SMVs.

Overall, our climate association analyses provide con-

vincing evidence in support of our hypothesis that CG-

SMVs, relative to other SMV classes, are more likely to

be involved in local adaptation along climate gradients.

In addition to the high frequency of significant associa-

tions with individual CG-SMVs, multivariate RDA

shows that climate and space across sampling localities

explain more variance in CG-SMVs (14.4%) than in SNPs

(13.3%), CHG-SMVs (13.6%) or CHH-SMVs (12.8%)

(Table 4). These differences in explained variance appear

modest, but large differences are not necessarily

Table 4 Number of polymorphisms used for redundancy anal-

yses, per cent variance explained by climate and spatial vari-

ables in each association, and the P-values for the associations

Variable sites

(no missing data)

% variance

explained P

CG-SMV 15 024 14.4 <0.001
CHG-SMV 4382 13.6 <0.001
CHH-SMV 7137 12.8 0.26

SNP 1394 13.3 <0.001

Table 5 Biplot (Fig. S1, Supporting infor-

mation) scores indicating the association

of individual climate and spatial vari-

ables along redundancy analyses axes

one (RDA1) and two (RDA2) for CG-

SMV, CHG-SMV, CHH-SMV and SNP

data sets. The score representing the cli-

mate variable with the strongest associa-

tion with each axis for each redundancy

analysis is in bold

RDA1 RDA2

CG CHG CHH SNP CG CHG CHH SNP

GSDD5 �0.66 �0.55 0.47 0.71 �0.40 �0.66 �0.82 0.65

CWD �0.45 �0.25 �0.09 0.62 �0.74 �0.79 �0.85 0.24

Tmax �0.86 �0.88 0.77 0.22 0.24 �0.34 �0.36 0.57

Tmin �0.05 0.07 �0.19 0.60 �0.47 �0.60 �0.74 0.46

Lon �0.40 �0.10 �0.02 0.81 �0.69 �0.56 �0.64 �0.26

Lat �0.03 �0.31 0.41 �0.58 0.72 0.70 0.63 0.42

Elev 0.14 0.27 �0.22 0.06 �0.08 0.40 0.36 �0.81

© 2016 John Wiley & Sons Ltd
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expected with such large numbers of loci (Lasky et al.

2012). Critically, because the entire CG-SMV class has a

stronger association with climate than do the SNPs

(Tables 4 and 5), which are likely to be neutral on aver-

age, CG-SMVs are more likely to be involved in local

adaptation to climate than a random locus, whether the

mechanism be direct or through linkage to genetic varia-

tion (Platt et al. 2015) and whether the CG-SMVs arose

through spontaneous mutation or environmental induc-

tion. CHH-SMVs, on the other hand, appear unlikely to

be involved in local adaptation due to their compara-

tively low climate association. Our results are consistent

with research in Arabidopsis showing that CG-SMVs are

highly associated with latitude and climate on the land-

scape (Keller et al. 2016), whereas CHH-SMVs are associ-

ated with response to temperature of greenhouse

growing conditions, likely due to their role in transposon

silencing (Dubin et al. 2015).

Our findings not only point to the role of CG methy-

lation in local plant response to the environment, but

this role seems to be different from that of SNPs. In

addition to differences in the climate variables shaping

SMVs from this study versus SNPs from previous work

using mixed model analyses (Sork et al. 2016; Gugger

et al. in press), we also find that SNPs in this study are

most strongly associated with spatial variables, whereas

SMVs are more strongly associated with climate vari-

ables using multivariate analyses (Table 4). These con-

trasting patterns among SMVs and SNPs establish the

potential for adaptive methylation variation to be

decoupled from genetic variation and independently

targeted by natural selection or other driving forces

(van der Graaf et al. 2015). Theoretical work suggests

that locally adapted phenotypes can arise more rapidly

when underlying variation arises both genetically and

epigenetically and that variation initially arising by epi-

genetic mechanisms can eventually lead to traits with a

heritable underlying genetic basis (Klironomos et al.

2013; Kronholm & Collins 2015).

Candidate genes potentially influenced by DNA
methylation

Most of the climate-associated SMVs were found in or

within 2.5 kb of a gene (Table 3), suggesting a possible

involvement in regulating the expression of those genes

and providing a potential mechanism for their involve-

ment in adaptation. Three genes have at least four

SMVs associated with Tmax and are worth highlighting.

Most interesting among them, scaffold20751.23308 con-

tains nine CG-SMVs and aligns to a gene identified in

both our reference genome and transcriptome to contain

an AP2 domain, which is commonly found in transcrip-

tion factors involved in floral development (Jofuku et al.

1994; Okamuro et al. 1997). Upon searching the entire

NCBI nr database, we found that this locus has high

similarity specifically with dehydration-responsive ele-

ment-binding protein 1A, which mediates transcription

under cold, drought and salt stress in Oryza sativa

(Dubouzet et al. 2003). Another interesting locus,

C2687893.1977, contains six CG-SMVs and occurs about

400 bp downstream of a gene with high similarity to

mitochondrial outer membrane porin 4-like protein in

Solanum spp. This gene belongs to a family encoding

voltage-dependent anion channels in Arabidopsis and

functions in the regulation of plant growth, develop-

ment and disease resistance (Tateda et al. 2011). Finally,

C2243561.395 is unique in having SMVs in all three con-

texts (CG, CHG and CHH) associated with Tmax,

although it falls on a small (1 kb) genomic contig with

no annotation. Locus scaffold 4607.51780 with only a

single climate-associated CG-SMV falls within an exon

of a gene homologous to a dehydration response protein

(dehydRP-like protein) in Eucalyptus cladocalyx, which

functions in plant–water relations (Bush & Thumma

2013), and is 10 kb downstream from a gene encoding a

Staygreen protein (Pfam PF12638; m01oak05463JC),

which is implicated in senescence-induced chlorophyll

degradation (Park et al. 2007). In sum, the climate-asso-

ciated SMVs can be linked to genes with potential rela-

tionships to plant response to the climate environment.

Further experimental work on these genes and their

expression is necessary to determine how they affect

physiological performance.

Is there a genetic basis of climate-associated SMVs?

This research raises the question of whether the cli-

mate-associated methylation patterns have a genetic

basis elsewhere in the genome, or they independently

arise and transmit to offspring. Our data offer an

opportunity for preliminary investigation. We used lin-

ear mixed models in PYLMM (as above) to test whether

variation at any of the 1810 SNPs is significantly associ-

ated with the 38 climate-associated CG-SMVs, after

adjusting for kinship based on the SNP data. Eight

SNPs are highly associated with climate-associated CG-

SMVs (Q < 0.1). However, the SNPs and CG-SMVs are

not near each other along the genome so this analysis

does not provide clear evidence for a genetic basis of

these CG-SMVs. Trans-acting SNPs may underlie a sub-

stantial fraction of CG-SMVs in Arabidopsis, but the

mechanism is not well understood (Dubin et al. 2015).

Future studies could utilize whole-genome sequences to

more thoroughly search for candidate genetic loci asso-

ciated with methylation sites.
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Conclusions

Our study offers evidence in a long-lived tree species

that CG-SMVs are involved in plant response to the

local environment and possibly the evolution of local

adaptation to climate. Empowered by a recently devel-

oped draft reference genome sequence, we were able to

demonstrate the specific sequence and genic context of

climate-associated methylation, offering essential details

for how the methylation might be acting. At least three

important questions remain unresolved: (i) Are CG-

SMVs controlled by underlying genetic variation

shaped by natural selection or might they offer an inde-

pendent, heritable source of variation upon which selec-

tion can act? (ii) Are they induced by environmental

conditions during the life of the organism, and if so, are

they transiently involved in phenotypic plasticity or are

they inherited, offering a sort of Lamarckian form of

evolution? (iii) Exactly how does this methylation varia-

tion influence phenotypes? Whole-genome and whole-

epigenome sequencing coupled with experiments exam-

ining gene expression and phenotypic response to envi-

ronmental treatments will provide additional insight

into these questions. Nonetheless, our findings indicate

that DNA methylation can be a mechanism for plant

response to environment leading to local adaptation in

natural populations. The implications for response to

climate change are profound, especially for long-lived

taxa experiencing rapid change, and invite further

study of the importance of methylation in other natural

ecological and evolutionary contexts.
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