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Abstract
Identifying	and	quantifying	the	importance	of	environmental	variables	in	structuring	
population	genetic	variation	can	help	inform	management	decisions	for	conservation,	
restoration,	or	reforestation	purposes,	in	both	current	and	future	environmental	con-
ditions.	Landscape	genomics	offers	a	powerful	approach	for	understanding	the	envi-
ronmental	 factors	 that	 currently	 associate	 with	 genetic	 variation,	 and	 given	 those	
associations,	where	populations	may	be	most	vulnerable	under	future	environmental	
change.	Here,	we	applied	genotyping	by	sequencing	to	generate	over	11,000	single	
nucleotide	polymorphisms	from	311	trees	and	then	used	nonlinear,	multivariate	envi-
ronmental	association	methods	to	examine	spatial	genetic	structure	and	its	associa-
tion	with	environmental	variation	in	an	ecologically	and	economically	important	tree	
species	endemic	to	Hawaii,	Acacia koa.	Admixture	and	principal	components	analyses	
showed	that	trees	from	different	islands	are	genetically	distinct	 in	general,	with	the	
exception	of	some	genotypes	that	match	other	islands,	likely	as	the	result	of	recent	
translocations.	Gradient	 forest	and	generalized	dissimilarity	models	both	 revealed	a	
strong	 association	 between	 genetic	 structure	 and	 mean	 annual	 rainfall.	 Utilizing	 a	
model	for	projected	future	climate	on	the	island	of	Hawaii,	we	show	that	predicted	
changes	in	rainfall	patterns	may	result	in	genetic	offset,	such	that	trees	no	longer	may	
be	genetically	matched	to	their	environment.	These	findings	indicate	that	knowledge	
of	current	and	future	rainfall	gradients	can	provide	valuable	information	for	the	con-
servation	of	existing	populations	and	also	help	refine	seed	transfer	guidelines	for	re-
forestation	or	replanting	of	koa	throughout	the	state.
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Acacia koa,	climate	change,	generalized	dissimilarity	modeling,	genotype–environment	
association,	genotyping	by	sequencing,	gradient	forest,	Hawaii,	landscape	genomics

1  | INTRODUCTION

Identifying	and	quantifying	the	importance	of	environmental	variables	
in	 structuring	 population	 genetic	 variation	 can	 inform	management	

decisions	 for	conservation,	 restoration,	or	 reforestation	purposes,	 in	
both	current	and	future	environmental	conditions.	For	example,	knowl-
edge	about	the	association	between	genotype	and	environment	is	im-
portant	for	selecting	proper	seeds	for	planting	when	tree	populations	
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are	 locally	 adapted	 (Aitken	&	Whitlock,	 2013;	 Sork	 et	al.,	 2013),	 as	
is	generally	the	case	(Rehfeldt,	Ying,	Spittlehouse,	&	Hamilton,	1999;	
Savolainen,	Pyhajarvi,	&	Knurr,	2007).	As	 the	environment	 changes,	
nonlocal	seed	sources	may	be	increasingly	considered	based	on	their	
match	to	the	novel	environment.	Therefore,	seed	transfer	guidelines	
can	benefit	from	knowledge	of	the	factors	structuring	genetic	varia-
tion	on	the	landscape	and	how	they	may	change	in	the	future.

Spatial	genetic	structure	can	arise	due	to	restricted	dispersal	and	
geographic	barriers	to	gene	flow	(Avise,	2000),	as	well	as	environmen-
tal	factors	that	shape	genetic	variation	on	the	landscape	by	influencing	
demographic	processes	 (e.g.,	via	phenology)	or	 imposing	natural	 se-
lection	that	 leads	to	 local	adaptation	(collectively,	“isolation	by	envi-
ronment”;	Sexton,	Hangartner,	&	Hoffmann,	2014;	Wang	&	Bradburd,	
2014).	Many	 conservation	 efforts	 rely	 on	delineating	distinct	 popu-
lations	 for	 management	 but	 often	 ignore	 the	 continuous	 nature	 of	
variation	on	the	landscape	and	its	potential	relationship	with	local	ad-
aptation	or	other	processes	that	lead	to	genotype–environment	asso-
ciations	(Frankham,	2010;	Rodríguez-	Quilón	et	al.,	2016).	However,	it	
is	important	to	understand	both	geographic	and	environmental	factors	
considering	the	potential	for	complex	relationships	on	the	landscape.

A	 landscape	 genomics	 approach,	 utilizing	 large	 numbers	 of	 ge-
netic	loci,	offers	a	powerful	means	of	detecting	subtle	genetic	varia-
tion	along	the	landscape	in	relation	to	geographic	and	environmental	
variables	 (Sork	et	al.,	2013).	When	coupled	with	emerging	analytical	
methods	to	explore	nonlinear	genotype–environment	associations	in	
multivariate	 space,	 this	 approach	can	enhance	our	 ability	 to	explain	
and	quantify	modern	patterns	and	then	project	them	into	the	future	
to	 identify	 vulnerable	 or	 resilient	 populations	 along	 the	 landscape	
(Fitzpatrick	&	Keller,	2015;	Holliday	et	al.,	2016).	Two	promising	mod-
els	are	gradient	forest	 (Ellis,	Smith,	&	Pitcher,	2012)	and	generalized	
dissimilarity	modeling	(Ferrier,	Manion,	Elith,	&	Richards,	2007),	which	
were	first	applied	to	community	ecological	data	sets	and	have	recently	
been	advocated	for	 landscape	genomics	 (Fitzpatrick	&	Keller,	2015).	
Each	can	be	used	to	quantify	the	role	of	particular	environmental	and	
spatial	variables	 in	structuring	genetic	variation	and	describe	poten-
tially	nonlinear	rates	of	change	along	these	gradients,	thus	testing	for	
isolation	by	environment	in	a	more	realistic	and	informative	way	than	
most	linear	models.	Furthermore,	they	can	be	considered	complemen-
tary	 to	 each	 other	 because	 they	 approach	 genotype–environment	
associations	in	very	different	ways:	Gradient	forest	is	regression	tree-	
based,	whereas	generalized	dissimilarity	modeling	is	distance-	based.

The	Hawaiian	Islands	provide	an	excellent	system	to	apply	land-
scape	genomics	for	current	conditions	as	well	as	for	future	scenar-
ios,	as	the	archipelago	encompasses	a	wide	range	of	geographic	and	
environmental	variation	with	sharp	gradients	within	a	relatively	small	
area	within	and	between	islands	(Vitousek,	1995).	The	geologic	his-
tory	of	the	archipelago	has	a	direct	impact	on	the	distribution	of	ge-
netic	variation	across	the	islands,	and	the	extant	islands	range	in	age	
from	5.1-	million-	year-	old	Kauai	to	the	still-	growing	island	of	Hawaii.	
Colonization	of	 the	 land	by	plants	 likewise	 ranges	 from	millions	of	
years	to	newly	colonized	(Price	&	Clague,	2002),	and	the	differences	
in	the	geological	age	of	rock	substrates	on	the	island	of	Hawaii	can	
impact	plant	communities	(Kitayama,	Mueller-	Dombois,	&	Vitousek,	

1995).	 The	 remoteness	 of	 the	Hawaiian	 Islands	 has	 resulted	 gen-
erally	 in	 a	 species-	poor	 but	 unique	 biota,	with	 a	 large	 number	 of	
endemic	species	including	a	few	examples	of	dramatic	adaptive	radi-
ation	(Carr	&	Kyhos,	1981;	Craddock	&	Kambysellis,	1997).	Many	of	
the	endemic	species	are	of	conservation	concern,	making	landscape	
genomic	investigations	timely	and	highly	applicable	for	management	
purposes.

One	 such	 case	 is	 for	 the	 ecologically,	 economically,	 and	 cultur-
ally	 important	 species,	Acacia koa	A.	 Gray	 (koa).	 Koa	 is	 an	 endemic	
outcrossing	 leguminous	 hardwood	 tree	 that	 has	 been	 under	 threat	
due	 to	 land	use	 changes,	 logging,	 and	 the	 introduced	 fungal	patho-
gen	Fusarium oxysporum	f.	sp.	koae	(Baker,	Scowcroft,	&	Ewel,	2009).	
A. koa	is	one	of	two	dominant	canopy	species,	along	with	Metrosideros 
polymorpha	 (‘ō’hia),	 in	native	Hawaiian	forests.	 It	 is	distributed	on	all	
the	 main	 Hawaiian	 Islands,	 except	 Niihau	 and	 Kahoolawe,	 and	 has	
the	 greatest	 densities	 on	 Hawaii,	 Maui,	 Oahu,	 and	 Kauai	 (Wagner,	
Herbst,	&	Sohmer,	1999).	It	is	found	in	a	broad	range	of	environments	
from	dry	 to	 semi-	saturated	 rain	 forests,	 and	 from	sea	 level	 to	more	
than	2,000	m	in	elevation.	The	largest	extant	populations	of	koa	are	
found	 on	 the	 island	 of	 Hawaii	 between	 1,000	 and	 2,000	m	 (Baker	
et	al.,	 2009).	Koa	 exhibits	 phenotypic	 diversity	with	 two	 forms	 that	
are	generally	recognizable	based	on	morphology.	A	shorter	form	with	
narrower	 phyllodes	 and	 longitudinally	 arranged	 seeds	 in	 pods	 is	 re-
ferred	to	sometimes	as	A. koaia	and	is	found	in	drier	areas	of	Hawaii,	
Maui,	 Lanai,	 and	 Molokai	 (Wagner	 et	al.,	 1999).	 A	 taller	 form	with	
broader	phyllodes	and	transversely	arranged	seeds	in	pods	is	referred	
to	generally	as	A. koa.	Based	on	molecular	analysis	using	the	nuclear	
ITS,	chloroplast	trnK	introns,	and	microsatellite	markers,	findings	from	
Adamski,	 Dudley,	 Morden,	 and	 Borthakur	 (2012)	 support	 previous	
recommendations	that	recognize	the	morphological	variations	at	the	
subspecific	 level	within	A. koa.	Genetically	based	morphological	 and	
growth	differences	are	also	apparent	among	A. koa	from	the	island	of	
Hawaii	and	other	islands	(Daehler,	Yorkston,	Sun,	&	Dudley,	1999;	Shi,	
2003;	Sun,	1996).	Although	unusual	and	difficult	to	explain,	A. koa may 
be	paraphyletic	with	its	closest	relative,	A. heterophylla,	which	itself	is	
monophyletic	and	 is	endemic	to	Réunion	Island	 in	the	 Indian	Ocean	
over	16,000	km	away	from	Hawaii	(Le	Roux	et	al.,	2014).	Seed	transfer	
guidelines	for	ecological	restoration	and	agroforestry	have	been	pro-
posed	based	on	ecological	zones	among	and	within	islands	as	well	as	
preliminary	genetic	analyses	 (Dudley	et	al.,	2017),	but	would	benefit	
from	insights	from	landscape	genomic	approaches	that	integrate	envi-
ronmental	and	genetic	components.

To	 characterize	 patterns	 of	 genetic	 variation	 in	 A. koa	 across	
Hawaii	and	identify	and	quantify	key	climate	variables	associated	with	
that	genetic	variation,	we	analyzed	allele	frequencies	of	single	nucle-
otide	polymorphisms	 (SNPs)	 in	relation	to	spatial	and	environmental	
variables	 in	two	predictive	nonlinear	modeling	frameworks:	gradient	
forest	 and	 generalized	 dissimilarity	 modeling.	 Our	 study	 objectives	
were	 to	 (i)	 examine	genomewide,	biogeographic	patterns	of	 genetic	
differentiation	in	koa	across	the	Hawaiian	Islands,	(ii)	identify	the	most	
important	geographic	and	environmental	variables	structuring	genetic	
variation	within	the	island	of	Hawaii,	and	(iii)	assess	whether	koa	popu-
lations	might	be	vulnerable	to	potential	future	environmental	changes	
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by	applying	predicted	future	climate	model	data	available	for	the	 is-
land	of	Hawaii.

2  | METHODS

2.1 | Sampling

We	 sampled	 311	 trees	 across	 the	 geographic,	 elevational,	 and	 cli-
matic	range	of	koa	on	the	islands	of	Hawaii,	Maui,	Oahu,	and	Kauai,	
including	six	putative	A. koaia	samples	from	the	island	of	Hawaii,	from	
November	2012	to	September	2013	(Table	S1).

2.2 | Genotyping by sequencing

Total	 genomic	 DNA	 was	 extracted	 from	 frozen	 tissue	 using	 the	
NucleoSpin	 kit	 (Macherey-	Nagel,	 Bethlehem,	 PA,	 USA).	 DNA	 was	
prepared	for	sequencing	using	an	efficient	restriction-	enzyme-	based	
approach	 commonly	 known	 as	 genotyping	 by	 sequencing	 (GBS)	
(Elshire	 et	al.,	 2011).	 Briefly,	DNA	was	 digested	with	 the	ApeKI	 re-
striction	enzyme,	common	and	unique	barcoded	adapters	with	over-
hangs	complementary	to	the	cut	site	were	ligated	to	each	sample,	48	
samples	were	pooled	in	equimolar	ratios,	and	the	pooled	library	was	
PCR-	amplified	and	sent	for	Illumina	sequencing.	We	largely	followed	
the	original	protocol	of	Elshire	et	al.	(2011),	including	using	the	same	
adapter	 concentration.	 However,	 a	 different	 set	 of	 longer	 barcode	
sequences	were	used	(Table	S2),	all	steps	were	performed	manually	
rather	than	robotically,	and	we	made	a	few	changes	to	optimize	the	
protocol	for	Acacia,	consistent	with	our	experience	using	similar	ap-
proaches	with	Quercus	 spp.	 (P.F.	Gugger	&	V.L.	 Sork,	 unpublished).	
For	example,	adapters	were	added	during	the	ligation	step	rather	than	
added	to	the	empty	plate	and	dried	down	prior	to	digestion;	AMPure	
XP	bead-	based	size	selection/purification	steps	were	added	after	the	
ligation	step	and	repeated	after	the	PCR	step	to	ensure	a	consistent	
distribution	 of	 fragment	 sizes	 between	 200	 and	 500	bp	 among	 all	
preps;	and	we	reduced	the	number	PCR	cycles	to	16	from	18.	Final	
libraries	were	checked	for	the	proper	size	distribution	on	an	Agilent	
BioAnalyzer	(Santa	Clara,	CA)	with	the	High	Sensitivity	DNA	assay	and	
quantified	using	a	Qubit	 fluorometer	 (Waltham,	MA).	Samples	were	
sent	 to	 the	UCLA	Broad	Stem	Cell	Research	Center	 for	 single-	end,	
100-	bp	sequencing	on	an	Illumina	HiSeq2000	v3	(San	Diego,	CA).

2.3 | Single nucleotide polymorphism calling

SNPs	were	identified	using	StackS	1.35	(Catchen,	Amores,	Hohenlohe,	
Cresko,	 &	 Postlethwait,	 2011;	 Catchen,	 Hohenlohe,	 Bassham,	
Amores,	&	Cresko,	2013).	Raw	Illumina	data	in	FASTQ	format	were	
quality-	filtered	and	demultiplexed	using	process_radtags,	which	
removed	adapter	sequence	with	up	to	two	mismatches	(--adapter_
mm),	 recovered	 reads	whose	 barcodes	 had	 up	 to	 one	mismatch	 to	
the	 expected	 barcodes	 (-r),	 removed	 any	 read	 with	 an	 uncalled	
base	(-c),	discarded	low-	quality	reads	as	defined	by	default	settings	
(-q),	and	trimmed	all	reads	to	87	bases	(-t).	Parameters	for	subse-
quent	steps	were	optimized	based	on	three	samples,	one	from	each	

of	 three	Hawaiian	 Islands,	 that	were	 replicated	 across	 four	 library	
preparations	and	 lanes	of	 Illumina	 sequencing.	We	 ran	StackS 1.21 
repeatedly	on	these	replicates	with	a	variety	of	parameter	values	by	
varying	one	at	a	time	in	each	run.	Specifically,	we	evaluated	-m	3–5,	 
-M	 1–3,	 -n	 1–3,	 --max_locus_stacks	 3–5,	 and	 --bound_high 
0.05	or	0.1	 (Figs	S1	and	S2).	The	 “optimal”	parameter	values	were	
those	that	minimized	differences	among	replicates	as	inferred	from	
ordinations	of	the	resulting	SNPs.	This	procedure	minimizes	the	po-
tential	SNP	and	genotype	calling	error	in	the	spirit	of	other	optimi-
zation	 procedures	 (Mastretta-	Yanes	 et	al.,	 2015).	 The	 ordinations	
included	multidimensional	scaling	based	on	Hamming	distance	 (Fig.	
S1)	 and	 principal	 components	 analysis	 (Fig.	 S2),	 which	 were	 per-
formed	in	PLINK	1.90b2n	(Chang	et	al.,	2015).	We	concluded	that	the	
“optimal”	values	for	our	data	were	ustacks	parameters	-m 4	(mini-
mum	stack	depth	to	retain	locus	in	an	individual)	and	-M 1	(maximum	
distance	between	stacks	to	combine	them	into	a	locus)	and	cstacks 
parameter	-n 1	 (number	of	mismatches	allowed	to	combine	 locus	
among	 samples	when	 creating	 catalog).	 In	 comparison	with	-m 4,	
-m 3	also	produced	similarly	small	differences	among	replicates	(i.e.,	
low	error)	when	in	combination	with	-M 1 -n 1	but	yielded	nearly	
twice	as	many	total	SNPs;	thus,	we	preferred	–m 3	to	–m 4.	Little	
difference	was	observed	among	--bound_high and --max_locus_
stacks	 alternatives;	 thus,	 values	 of	 0.05	 and	 3	were	 chosen,	 re-
spectively.	 Regardless	 of	 the	 parameter	 values	 selected,	 summary	
statistics	 of	 diversity,	 such	 as	 heterozygosity	 (0.22	<	H < 0.30)	 and	
nucleotide	diversity	(0.0010	<	π	<	0.0017),	did	not	vary	substantially	
(Table	S3).	Quality	filters	were	applied	to	the	pipeline	to	retain	a	high-	
confidence	subset	of	SNPs;	with	rxstacks,	we	removed	SNPs	with	
lnL	<	−30.0	 (–-lnl_lim),	 proportion	 of	 “confounded”	 loci	>	0.25	
(--conf_filter),	 and	nonbiological	 haplotypes	 (--prune_haplo).	
In	each	pass	of	the	StackS	pipeline	through	cstacks,	the	catalog	(a	
reference	set	of	sequences)	was	built	using	a	geographically	repre-
sentative	subset	of	14	samples,	as	 is	recommended.	Only	one	SNP	
per	 “stack”	was	 retained,	and	SNPs	with	>30%	missing	data	across	
all	samples	 (n = 311),	 lnL	<	−30	 (populations –r 0.7 –-lnl_
lim -30 –-write_single_snp),	or	minor	allele	frequency	<0.05	
were	discarded.	Another	set	of	SNPs	was	generated	with	the	same	
filters	considering	only	samples	from	the	island	of	Hawaii	(n = 207,	or	
n = 201	without	A. koaia).

2.4 | Ploidy

Koa	is	tetraploid	and	does	not	exhibit	variation	in	ploidy	(Atchison,	
1948;	Carr,	1978;	Hipkins,	2004;	Shi,	2003),	but	it	is	unclear	whether	
it	 is	an	autotetraploid	or	allotetraploid.	Some	authors	have	specu-
lated	 that	 koa	 is	 an	 allotetraploid	with	 disomic	 inheritance	 based	
on	 inconclusive	 evidence	 (Shi,	 2003;	 Shi	 &	 Brewbaker,	 2005).	 In	
support	of	this	view,	isozyme	data	(Conkle,	1996)	often	show	more	
than	two	alleles	at	a	 locus	within	an	individual.	 In	contrast,	others	
have	argued	 that	A. koa	 is	 autotetraploid	because	 its	 closest	 rela-
tive,	A. heterophylla,	which	is	phylogenetically	nested	within	A. koa,	
is	a	putative	autotetraploid	formed	from	another	diploid	Acacia	spe-
cies	(Le	Roux	et	al.,	2014).
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StackS	is	designed	for	diploid	species,	but	can	call	SNPs	in	poly-
ploids	if	the	error	model	is	adjusted	to	consider	the	possibility	that	
reads	supporting	each	allele	in	a	heterozygote	may	deviate	substan-
tially	from	50:50.	We	did	so	by	setting	--bound_high	(the	maximum	
sequencing	error	rate)	to	0.05	as	indicated	above.	Nonetheless,	the	
resulting	 genotype	 calls	 are	 “coerced”	 to	 appear	 diploid.	 If	 koa	 is	
an	allotetraploid	(amphidiploid)	formed	from	two	species,	then	this	
coercion	may	be	appropriate	because	divergent	homeologous	 loci	
are	 likely	 to	be	 separated	 into	 separate	 loci	 in	 the	StackS	 pipeline	
under	our	optimization	procedure.	If	koa	is	autotetraploid,	then	we	
expect	allele	 frequencies	 to	be	biased	 toward	 intermediate	values	
because	allelic	dosages	of	0.25	and	0.75	will	be	coerced	to	0.5.	We	
expect	this	coercion	to	occur	equally	in	both	directions	(from	0.75	
to	0.5	and	from	0.25	to	0.5);	thus,	the	primary	effect	would	be	to	
bin	all	heterozygotes	as	0.5.	This	bias	toward	intermediate	allele	fre-
quencies	in	individuals	would	not	bias	the	association	of	these	allele	
frequencies	with	environmental	variables	on	the	landscape	(see	de-
scription	of	methods	below),	but	the	binning	may	reduce	power	to	
detect	such	associations.	Therefore,	we	are	confident	that	our	pipe-
line	 is	unlikely	to	 lead	to	erroneous	conclusions	from	downstream	
analyses.

To	explore	the	possibilities	that	koa	is	autotetraploid	or	that	 it	 is	
allotetraploid	 and	 our	 pipeline	 does	 not	 split	 homeologous	 loci,	we	
generated	histograms	of	the	fraction	of	reads	supporting	each	allele	
for	each	locus	with	at	least	60	×	coverage	for	each	individual	with	at	
least	1,000	such	loci.	If	either	of	these	issues	is	present,	we	expect	to	
find	peaks	at	0.25,	0.5,	and	0.75,	rather	than	just	0.5	(Arnold,	Kim,	&	
Bomblies,	2015).

2.5 | Genetic diversity and structure

Mean	expected	heterozygosity	 (H)	and	nucleotide	diversity	 (π)	were	
estimated	 for	 each	 island	 using	 StackS.	 Genetic	 structure	was	 esti-
mated	with	admixture	 1.3.0	 (Alexander,	Novembre,	&	 Lange,	 2009)	
considering	K =	{1,	2,	3,	…,	8}	clusters	across	all	samples/islands	and	
within	only	 the	 island	of	Hawaii	 (n = 207).	The	 “optimal”	number	of	
clusters	was	chosen	based	on	the	K	with	the	lowest	cross-	validation	
error,	as	recommended	by	the	developers.	For	the	data	set	containing	
all	samples,	pairwise	FST	was	estimated	among	clusters	using	admixture 
and	compared	to	estimates	among	the	four	Hawaiian	Islands	as	calcu-
lated	in	PLINK	1.90b3.29.	These	FST	estimates	are	useful	for	relative	
comparisons	and	are	unlikely	to	be	biased	substantially	using	diploid	
rather	than	tetraploid	SNP	calls,	because	the	effect	allele	frequency	
binning	averages	out	over	the	large	number	of	SNPs.	In	addition,	we	
performed	principal	 components	analyses	using	PLINK	to	provide	a	
means	for	visualizing	continuous	changes	in	genetic	structure	comple-
mentary	to	the	discrete	clustering	approach	of	admixture.

2.6 | Environmental and spatial associations with 
genetic variation

To	quantify	 the	 contribution	of	 environmental	 and	 spatial	 variables	
in	structuring	genetic	variation,	we	performed	two	types	of	nonlinear	

analyses,	gradient	 forest	 (GF)	and	generalized	dissimilarity	modeling	
(GDM),	 focusing	 on	 samples	 of	 A. koa	 within	 the	 island	 of	 Hawaii	
(n = 201).	These	approaches	are	complementary,	as	GF	is	a	regression	
tree	 approach	 and	GDM	 is	 a	 distance-	based	 approach.	All	 analyses	
were	performed	on	an	individual	basis,	rather	than	arbitrary	“popula-
tion”	groupings,	which	are	not	straightforward	with	our	sampling	de-
sign	and	observed	patterns	of	genetic	 structure	and	admixture	 (see	
Results).	In	addition	to	spatial	data	based	on	GPS	coordinates	for	each	
tree,	we	used	the	following	environmental	variables	as	predictors	for	
both	analyses:	log10	of	the	mean	estimated	volcanic	rock	substrate	age	
from	a	U.S.	Geological	Survey	geologic	map	(Sherrod,	Sinton,	Watkins,	
&	 Brunt,	 2007),	 mean	 annual	 rainfall	 (mm)	 from	 the	 2011	 Rainfall	
Atlas	of	Hawaii	 (Giambelluca	et	al.,	2013),	mean	minimum	tempera-
ture	(°C)	from	the	2014	Climate	of	Hawaii	project	(Giambelluca	et	al.,	
2014),	and	 isothermality	 (mean	diurnal	 range	÷	mean	annual	range),	
temperature	seasonality	 (standard	deviation	×	100),	and	rainfall	sea-
sonality	 (coefficient	 of	 variation)	 calculated	 from	 the	 above	 climate	
data	sources	in	ArcGIS	10.0	(ESRI,	Redlands,	CA,	USA)	(Fig.	S3).	These	
specific	environmental	variables	were	chosen	as	a	representative	set	
that	 reflects	 factors	 expected	 to	 influence	 koa	 and	 that	 generally	
have	correlations	(|r|)	<	.8	with	each	other.	Mean	minimum	tempera-
ture	and	mean	annual	rainfall	are	highly	correlated	(r > .95)	with	other	
mean	temperature	and	rainfall	variables,	respectively,	 that	were	not	
included	(Table	S4).

Gradient	 forest	 analysis	 was	 implemented	 in	 “gradientForest”	
(http://gradientforest.r-forge.r-project.org/)	in	R	3.1.2	(R	Development	
Core	Team).	GF	is	a	nonparametric,	machine-	learning	regression	tree	
approach	 (Ellis	 et	al.,	 2012)	 that	 allows	 for	 exploration	 of	 nonlinear	
associations	 of	 spatial,	 environmental,	 and	 allelic	 variables.	 The	 ap-
proach	partitions	 the	 allele	 frequency	data	 at	 split	values	 along	 the	
environmental	gradients.	Split	importance,	a	measure	of	the	amount	of	
variation	explained,	is	high	in	positions	along	the	gradient	where	allelic	
change	is	 large.	Moving	along	the	gradient,	the	split	 importance	val-
ues	are	summed	cumulatively	to	produce	a	steplike	function	for	allele	
frequency	change	along	the	environmental	gradient.	For	this	analysis,	
we	used	the	same	SNP	data	in	the	form	of	allelic	variables	as	above,	
except	 that	missing	data	were	 retained	 rather	 than	 imputed.	Spatial	
variables	were	 defined	 using	 principal	 coordinates	 of	 neighborhood	
matrices	(PCNMs),	also	known	as	Moran’s	eigenvector	maps	(MEM),	
based	 on	 the	 geographic	 coordinates	 in	 decimal	 degrees	 using	 the	
pcnm	function	in	“vegan”	(Oksanen	et	al.,	2016).	PCNMs	are	a	set	of	
orthonormal	 variables	 calculated	 through	 eigenvalue	 decomposition	
of	a	 spatial	weighting	matrix,	 in	our	case,	based	on	x–y-	coordinates	
(Dray,	Legendre,	&	Peres-	Neto,	2006).	We	retained	half	of	the	PCNM	
variables	with	positive	eigenvalues	(n = 26),	as	has	been	suggested	in	
similar	contexts	(Fitzpatrick	&	Keller,	2015;	Manel	et	al.,	2012).

Generalized	 dissimilarity	 modeling	 (Ferrier	 et	al.,	 2007),	 which	
is	 a	 distance-	based,	 nonlinear	 extension	 of	 matrix	 regression,	 was	
implemented	 in	 the	 R	 package	 “gdm”	 1.2.3	 (Manion,	 Lisk,	 Ferrier,	
Nieto-	Lugilde,	&	Fitzpatrick,	2016).	GDM	can	account	 for	nonlinear	
relationships	between	genetic	distance	and	environmental	 and	geo-
graphic	distance,	as	well	as	variation	in	the	rate	of	allelic	compositional	
change	along	environmental	gradients	by	fitting	splines	(Fitzpatrick	&	

http://gradientforest.r-forge.r-project.org/
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Keller,	2015).	Spline	shape	describes	the	allelic	compositional	change	
along	 the	 environmental	 gradient,	while	 spline	 height	 describes	 the	
importance	of	the	particular	environmental	variable.	Genetic	distances	
among	 individuals	 were	 calculated	 as	 Euclidean	 distance	 based	 on	
allelic	variables.	Geographic	distance	was	accounted	for	in	the	GDM	
based	on	Euclidean	distance	among	coordinates	(geo=T).

2.7 | Mapping genetic offset under future climate

To	 investigate	how	these	analyses	can	be	used	for	management	pur-
poses,	we	identified	parts	of	the	A. koa	distribution	that	might	be	vulner-
able	to	anticipated	climate	change	by	estimating	the	expected	“genetic	
offset”	between	one	future	climate	scenario	and	the	current	landscape	
patterns	 (as	estimated	above)	 following	Fitzpatrick	 and	Keller	 (2015).	
Genetic	offset	is	a	measure	of	the	magnitude	of	genetic	change	required	
between	present	and	future	climate	to	maintain	the	currently	observed	
relationship	between	genetic	and	environmental	variation.	In	these	anal-
yses,	we	excluded	volcanic	rock	substrate	age	because	it	was	not	found	
to	be	a	significant	contributor	to	genetic	patterns	on	the	landscape	(see	
Results)	and	because	future	rock	age	is	directly	linearly	related	to	cur-
rent	rock	age.	As	an	estimate	of	future	climate	in	Hawaii,	we	chose	to	
use	IPCC5	CMIP5	data	at	30	arcsec	resolution	from	the	CESM1-	CAM5-	
1-	FV2	global	circulation	model	under	the	Representative	Concentration	
Pathway	4.5	greenhouse	gas	emissions	scenario	for	the	year	2070	(av-
erage	of	2061–2080)	(Fig.	S4).	These	data	offer	a	moderate,	representa-
tive	scenario	for	demonstrative	purposes,	as	data	optimized	specifically	
for	Hawaii	are	not	all	available	for	our	analyses.

For	 projecting	 GF	 results,	we	 first	 used	 the	GF	predict	 func-
tion	to	predict	genetic	variation	across	all	grid	cells	on	the	 island	of	
Hawaii.	We	 then	mapped	 the	 resulting	 predictions	 across	 the	 land-
scape	masked	by	the	expected	distribution	of	A. koa/A. koaia	(J.P.	Price	
et	al.,	2012)	using	principal	components	of	the	predictions	to	generate	
a	red–green–blue	color	scale	according	to	the	first	three	axes.	Genetic	
offset	under	the	future	climate	scenario	was	then	estimated	by	first	
using	the	GF	predict	function	with	the	future	climate	data	and	then	
estimating	Euclidean	distance	between	current	predictions	and	future	
predictions	weighted	by	variable	importance	for	each	grid	cell	on	the	
landscape.	A	 similar	 procedure	was	 followed	 for	GDM	 results	 using	
the	 gdm.transform	 and	 GDM	 predict	 functions	 with	 principal	
components	to	predict	and	map	current	genotype–environment	rela-
tionships	onto	the	landscape.	The	GDM	predict	function	was	then	
used	with	both	current	and	future	climate	data	rasters	and	time=T	to	
estimate	genetic	offset	in	a	single	step.

3  | RESULTS

3.1 | Single nucleotide polymorphisms and ploidy

We	identified	11,001	SNPs	passing	the	StackS	filters	with	minor	allele	
frequency	 >0.05	 and	 representation	 in	 at	 least	 70%	of	 all	 samples.	
Mean	depth	of	coverage	per	sample	for	filtered	SNPs	is	20.1	(range:	
6.2–49.9)	(Fig.	S5;	Table	S1),	and	mean	proportion	of	loci	with	missing	
data	 per	 sample	 is	 0.22	 (range:	 0.04–0.73)	 (Table	 S1).	 Similarly,	we	

found	11,527	SNPs	meeting	those	criteria	considering	only	samples	
within	the	island	of	Hawaii.

Histograms	of	the	fraction	of	reads	supporting	each	allele	for	40	
individuals	 that	 have	 at	 least	1,000	 loci	with	 at	 least	60	×	coverage	
demonstrate	 that	 heterozygotes	 are	 primarily	 called	 from	 situations	
in	which	support	for	each	allele	is	approximately	50:50	(0.5)	(Fig.	S6).	
In	many	cases,	the	tails	of	the	histogram	extend	to	0.25	and	0.75,	but	
only	in	a	few	cases	are	subtle	peaks	suggested.	As	a	result,	we	believe	
that	koa	may	be	allotetraploid	(amphidiploid)	and	our	pipeline	is	sep-
arating	homeologs,	meaning	that	there	 is	 likely	very	 little	bias	 in	the	
genotype	calls	or	downstream	analyses.

3.2 | Genetic diversity and structure

Genetic	diversity	is	moderate:	0.29	<	H < 0.33	and	0.0016	<	π	<	0.0018	
(Table	1).	 FST	 values	 among	 islands	 and	 among	 admixture	 clusters	
are	moderate	 to	high	 for	 a	 tree	 species:	0.05	<	FST	<	0.19	 (Table	2).	
These	relatively	high	FST	values	might	 represent	 further	support	 for	
our		argument	that	koa	is	allotetraploid.	If	koa	were	autotetraploid	and	
analyzed	as	a	diploid,	then	there	would	be	an	excess	of	heterozygotes	
due	to	binning	all	heterozygotes,	which	would	depress	FIS and FIT	to	
negative	values	and	consequently	reduce	or	“cancel	out”	all	but	the	
largest	FST	values.	The	“optimal”	number	of	clusters	as	inferred	from	
admixture	is	7	when	considering	all	samples	and	5	when	considering	
only	the	island	of	Hawaii	(Figure	1).	The	latter	is	essentially	the	same	as	

TABLE  1 Mean	expected	heterozygosity	(H),	nucleotide	diversity	
(π),	and	their	standard	errors	(SE)	estimated	for	each	island

Island H SE π SE

Hawaii 0.33 0.0014 0.0018 0

Kauai 0.30 0.0013 0.0016 0

Maui 0.29 0.0015 0.0017 0

Oahu 0.29 0.0015 0.0017 0

TABLE  2 Pairwise	FST	among	islands	and	among	genetic	clusters	
inferred	from	admixture

Island Hawaii Oahu Kauai Maui

Hawaii –

Oahu 0.12 –

Kauai 0.14 0.14 –

Maui 0.08 0.05 0.13 –

Cluster K1 K2 K3 K4 K5 K6 K7

K1 –

K2 0.12 –

K3 0.10 0.08 –

K4 0.09 0.15 0.13 –

K5 0.16 0.16 0.15 0.19 –

K6 0.10 0.13 0.10 0.11 0.18 –

K7 0.08 0.14 0.11 0.05 0.16 0.11 –
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a	subset	of	those	inferred	across	all	samples,	and	thus,	only	the	overall	
result	is	shown.	Kauai	and	Oahu	are	dominated	by	one	cluster	each;	
Maui	 is	a	mix	of	two	clusters,	one	of	which	is	the	same	as	 in	Oahu;	
and	Hawaii	 contains	 five	 of	 its	 own	 clusters	with	 some	 geographic	
structure	 (e.g.,	windward	 versus	 leeward)	 and	 individuals	 in	 various	
levels	of	admixture.	A. koaia	(from	Hawaii)	may	be	the	product	of	ad-
mixture	from	individuals	from	Maui	and	Kauai.	Cluster	membership	is	
generally	not	significantly	correlated	with	the	amount	of	missing	data	
nor	coverage	after	accounting	 for	multiple	 testing	 (−0.15	<	r <	0.11,	
p >	0.05),	except	for	cluster	K4	which	is	weakly	but	significantly	asso-
ciated	with	missing	data	percentage	(r =	0.23,	p =	0.0004).	PCA	reveals	
some	notable	differences	among	islands	and	shows	similar	patterns	to	
those	from	admixture	 (Figure	2).	The	first	principal	components	axis	

separates	 Hawaii	 from	 other	 islands,	 shows	 some	 structure	 within	
Hawaii,	and	shows	that	some	samples	in	Maui	are	distinct	from	those	
on	Oahu.	The	second	axis	separates	the	samples	in	Kauai	and	suggests	
that	A. koaia	 is	distinct	but	genetically	similar	to	Kauaian	samples	of	
A. koa.	 In	both	the	ordination	and	the	admixture	plots,	a	few	“stray”	
individuals	appear	to	cluster	with	the	“wrong”	island,	suggesting	they	
may	have	been	moved	or	arrived	there	recently.

3.3 | Environmental and spatial associations with 
genetic variation

GF	 analysis	 indicates	 that	 mean	 annual	 rainfall	 is	 the	 single	 most	
important	 predictor	 among	 all	 environmental	 and	 spatial	 variables	

F IGURE  1  (a)	Map	depicting	individual	assignments	to	seven	genetic	clusters	inferred	from	admixture	against	a	rainfall	gradient	as	the	
background	map	color.	(b)	Individuals	(vertical	bars)	colored	by	proportion	assignment	to	each	genetic	cluster
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considered;	 isothermality,	 minimum	 temperature,	 temperature	 sea-
sonality,	and	rainfall	seasonality	have	moderate	 importance;	and	log	
of	the	rock	substrate	age	has	 little	 importance	(Figure	3a).	Summing	
importances	of	all	PCNMs,	 the	results	suggest	 that	spatial	variables	
explain	84%	of	variation	and	environmental	variables	explain	16%,	al-
though	these	estimates	may	vary	when	considering	different	numbers	
of	 spatial	 and	 environmental	 variables.	 Allelic	 composition	 changes	
sharply	 between	 3,000	 and	 4,000	mm/yr	 rainfall,	 whereas	 changes	
along	other	environmental	variables	occur	gradually	or	with	modest	
step-	changes,	if	at	all	(Figure	3b).

Geographic	and	environmental	distances	for	the	variables	consid-
ered	with	GDM	explain	32.9%	of	allelic	variation	 (deviance).	Annual	
rainfall	is	by	far	the	most	important	predictor,	whereas	there	is	almost	
no	contribution	of	minimum	temperature	or	rock	substrate	age,	and	
all	other	variables	contribute	modestly	(Figure	4).	Rainfall	varies	more	
linearly	in	the	GDM	results	compared	to	the	GF	results,	and	unlike	the	
GF	results,	environmental	variables	explain	more	variation	(80%)	than	
the	spatial	variable	(20%).

Mapped	projections	of	GDM	and	GF	results	onto	the	landscape	
are	generally	concordant	and	show	that	eastern	part	of	 the	 island	
of	Hawaii,	which	is	the	windward	side	where	rainfall	 is	high,	 is	ge-
netically	 different	 from	 the	 rest	 of	 island	 (Figure	5).	 This	 eastern	
area	 also	 exhibits	 the	 highest	 genetic	 offset	 under	 our	 future	 cli-
mate	 change	 scenario,	 owing	 to	 predicted	 decreases	 in	 rainfall	 in	
this	region.

4  | DISCUSSION

4.1 | Biogeography

Genetic	structure	among	islands	is	relatively	strong	and	complicated,	
suggestive	of	isolation	with	periodic	dispersal.	Evidence	of	isolation	is	
seen	in	the	PCA	and	admixture	results	that	show	distinct	clusters	that	

are	unique	to	each	 island	 (Figures	1	and	2).	Most	 individuals	on	the	
small	islands	are	genetically	pure,	whereas	the	big	island	of	Hawaii	is	
composed	of	 several	highly	admixed	clusters	 (Figure	1)	or	 relatively	
continuous	 variation	 (Figure	2)	 specific	 to	 that	 island.	 Nonetheless,	
dispersal	appears	to	be	an	important	force	structuring	variation	among	
islands.	For	example,	the	Oahu	genetic	cluster	is	found	prominently	on	
Maui	near	its	northeastern	coast,	where	a	few	individuals	are	admixed	
(possible	F1s),	as	well	as	in	a	few	pure	individuals	on	Kauai	and	Hawaii	
(Figure	1).	These	dispersal	events	are	likely	recent,	given	the	general	
lack	 of	 admixture	 or	 apparent	 backcrosses.	 For	 example,	 they	 are	
not	consistent	with	a	long	history	of	pollen	dispersal	with	prevailing	
winds	from	northeast	to	southwest	(e.g.,	Gugger	&	Cavender-	Bares,	
2013).	Given	 the	 cultural	 and	 economic	 importance	 of	 the	 species,	
along	with	active	restoration	programs,	 it	 is	 likely	that	the	observed	
recent	dispersal	events	relate	to	human	activities,	although	we	can-
not	 rule	 out	 other	mechanisms.	Hints	 of	 deeper	 biogeographic	 his-
tory	are	suggested	 in	 the	PCA	 (Figure	2)	and	pairwise	FST	estimates	
(Table	2),	which	show	that	populations	on	Oahu	and	Maui	are	most	
similar.	Hierarchical	clustering	analyses	of	genetic	variation	presented	
in	Dudley	et	al.	(2017)	suggest	that	these	populations	are	in	turn	most	
similar	 to	A. koa	on	Kauai	and	 least	 similar	 to	 those	on	Hawaii,	 also	
consistent	with	our	findings	by	island	and	cluster	 (Table	2).	Without	
rooting	 these	 relationships,	 it	 is	 hard	 to	 test	whether	 the	 dispersal	
and	colonization	history	follows	a	stepping-	stone	pattern	from	oldest	
(Kauai)	to	youngest	(Hawaii)	island.

Interestingly,	A. koaia	on	Hawaii	 falls	within	the	range	of	genetic	
variation	for	A. koa	but	forms	a	distinct	group	that	 is	most	similar	to	
A. koa	 populations	 on	Kauai	without	 signs	 of	 admixture	with	 popu-
lations	 from	 the	 island	of	Hawaii	 (Figure	2).	Therefore,	A. koaia may 
be	a	drought-	adapted	ecotype	formed	following	dispersal	 to	Hawaii	
from	 Kauai,	 possibly	 through	 stabilized	 admixture	 (“hybrid	 swarm”)	
of	Kauaian	populations	with	a	smaller	fraction	of	Mauian	populations	
(Figure	1).	This	scenario	also	suggests	that	Kauaian	populations	may	
not	 readily	 interbreed	with	 populations	 of	A. koa	 from	 the	 island	of	
Hawaii,	facilitating	ecotypic	divergence	on	Hawaii.	 If	A. koaia	contin-
ues	 to	be	considered	a	different	 species	or	 subspecies	on	 the	basis	
of	morphology,	ecology,	and	genetics,	our	genetic	data	suggest	 that	
populations	on	Kauai	might	also	represent	a	cryptic	species.	Indeed,	it	
might	be	argued	that	populations	on	each	island	can	be	considered	a	
different	subspecies	according	to	the	observed	genetic	clustering	with	
limited	admixture	as	well	as	previously	reported	isozyme	and	geneti-
cally	based	morphological	differences	among	the	island	of	Hawaii	and	
the	other	islands	(Conkle,	1996;	Daehler	et	al.,	1999;	Shi,	2003;	Sun,	
1996).	However,	 further	morphological	and	ecological	 investigations	
are	warranted.

4.2 | Rainfall structures diversity

Within	the	 island	of	Hawaii,	variation	 is	partially	structured	by	geo-
graphic	factors	but	may	be	mostly	driven	by	rainfall	gradients.	Both	
GF	 and	 GDM	 analyses	 indicate	 that	 rainfall	 is	 by	 far	 the	most	 im-
portant	 variable	 associated	with	genetic	 variation	 (Figures	3	 and	4).	
The	 sharp	 changes	 in	 genetic	 composition	 from	 the	wet,	windward	

F IGURE  2 Principal	components	analysis	of	11,001	SNPs	across	
305	samples	of	Acacia koa	and	6	A. koaia
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(eastern)	side	of	the	island	to	the	dry,	leeward	(western)	side	are	strik-
ing	in	both	landscape	projections.	The	primary	disagreements	among	
the	methods	are	the	relative	role	of	spatial	and	environmental	vari-
ables	and	whether	the	relationship	with	rainfall	is	approximately	linear	
(GDM)	versus	 a	 steep	 step	 function	 (GF),	 both	of	which	 can	be	at-
tributed	to	differences	in	statistical	approach	and	sensitivity,	as	well	
as	the	number	of	spatial	versus	environmental	variables	considered	in	
each model.

Genomewide	 associations	with	 environmental	 variables	 can	 re-
sult	 from	 geographic,	 demographic,	 or	 selective	 forces	 (Wang	 &	
Bradburd,	 2014).	We	do	 not	 believe	 geographic	 forces	 alone,	 such	
as	physical	barriers	on	the	 island	of	Hawaii,	explain	 this	 result.	The	
topographic	features	of	the	island	of	Hawaii	where	genetic	change	is	
steepest	are	not	likely	to	block	dispersal,	and	in	fact,	pollen	is	likely	
to	readily	disperse	from	the	windward	to	leeward	side	of	the	island,	
promoting	homogenization	along	this	axis	for	which	we	observe	the	
sharpest	differences.	 Furthermore,	 individuals	 at	 the	 southern,	wet	
end	of	Mauna	Loa	Road	 (Table	S1)	 are	not	physically	blocked	 from	
individuals	 located	 further	 upslope	 along	 the	 drier	 stretch	 of	 road,	
but	 the	southern	samples	are	genetically	more	similar	 to	windward	
populations	 (Figure	1).	 Instead,	 other	 demographic	 and	 selective	
forces	may	be	at	play.	For	example,	steep	environmental	differences	

over	 small	 spatial	 scales	 can	 lead	 to	 differences	 in	 flowering	 phe-
nology	 among	 nearby	 individuals,	 biasing	 mating	 patterns	 toward	
those	 with	 similar	 environmentally	 controlled	 phenology	 leading	
to,	 or	magnifying,	 genotype–environment	 associations	 (Soularue	 &	
Kremer,	 2014).	Moreover,	 environmental	 gradients	might	 influence	
the	behavior	or	distributions	of	 key	 insect	dispersers	of	 koa	pollen	
and/or	 animal	 dispersers	 of	 its	 seeds.	Another	 explanation	 for	 the	
observed	associations	is	local	or	clinal	adaptation	to	rainfall	regimes	
(e.g.,	water	stress).	Strong	genotype–environment	correlations	after	
accounting	for	spatial	variables,	as	we	observe,	have	been	attributed	
to	local	adaptation	(e.g.,	Manel	et	al.,	2010).	Furthermore,	 it	 is	clear	
that	water	stress	plays	an	 important	role	 in	ecotypic	differentiation	
between	A. koa and A. koaia	on	Hawaii	(Baker	et	al.,	2009)	and	A. koa 
populations	 exhibit	 genetically	 based	differences	 in	water	 use	 effi-
ciency	along	elevation	gradients	on	the	island	(Ares,	Fownes,	&	Sun,	
2000),	suggesting	the	importance	of	adaptation	to	water	stress	more	
generally	for	this	genus	in	this	setting.	In	addition,	a	number	of	koa	
provenance	tests	more	broadly	demonstrate	local	adaptation	of	koa	
population	 to	home	environments	among	 islands	and	offer	prelimi-
nary	evidence	of	differences	among	populations	within	islands	based	
on	 general	 growth	 and	 morphological	 quantitative	 traits	 (Conrad,	
Fulii,	 &	 Ikawa,	 1995;	 Daehler	 et	al.,	 1999;	 Shi,	 2003;	 Sun,	 1996).	

F IGURE  3  (a)	R2-	weighted	importance	of	environmental	and	spatial	variables	for	explaining	genetic	gradients	from	gradient	forest	analysis.	
(b)	Cumulative	importance	of	allelic	change	along	six	environmental	gradients
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Explanations	 based	 on	 demographic	 and	 selective	mechanisms	 are	
not	mutually	exclusive,	as	natural	selection	and	assortative	mating	by	
phenology	can	serve	to	reinforce	each	other	(Andrew,	Ostevik,	Ebert,	
&	 Rieseberg,	 2012;	Via,	 Bouck,	 &	 Skillman,	 2000),	 and	 patterns	 of	
neutral	and	adaptive	genetic	variation	can	be	correlated	for	a	number	
of	reasons	(e.g.,	Gugger,	Cokus,	&	Sork,	2016;	Sork	et	al.,	2016;	Wang	
&	Bradburd,	2014).	Thus,	our	findings	are	consistent	with	isolation-	
by-	environment	 or	 isolation-	by-	adaptation	 models	 (Nosil,	 Funk,	 &	
Ortiz-	Barrientos,	2009;	Orsini,	Vanoverbeke,	Swillen,	Mergeay,	&	De	
Meester,	2013;	Wang	&	Bradburd,	2014).

4.3 | Risk of genetic offset

Because	rainfall	appears	to	be	so	important	in	shaping	variation,	it	is	
unsurprising	that	predictions	of	genetic	offset,	based	on	a	future	cli-
mate	scenario,	suggest	that	the	most	vulnerable	populations	are	along	
the	edge	of	the	windward–leeward	transition	zone	(Figure	5)	where	
rainfall	is	expected	to	decline	in	the	future	according	to	the	model	we	
selected	(Figs.	S3	and	S4).	Regardless	of	whether	the	associations	are	

driven	by	demographic	or	selective	forces,	we	expect	that	changing	
environment	will	lead	to	the	greatest	genetic	changes	from	today’s	ge-
netic	variation	to	expected	future	variation.	To	the	extent	that	these	
relationships	are	adaptive,	we	can	assign	vulnerabilities	to	projected	
change	where	 population	may	 be	most	maladapted	 to	 future	 envi-
ronments.	Further	work	 integrating	population	genomic	and	quanti-
tative	genetic	approaches	is	needed	to	break	down	the	contribution	
of	demographic	and	adaptive	forces,	and	monitoring	of	koa	popula-
tions	might	provide	empirical	data	to	validate	the	model	projections	
of	vulnerability.

4.4 | Management implications

We	observed	strong	genetic	structure	among	islands,	clusters,	and	
ecotypes,	 and	understanding	 these	population	differences	 can	 in-
form	 land	 management	 decisions.	 For	 example,	 preliminary	 seed	
transfer	 guidelines	 follow	 ecological	 zones	within	 islands	 (Dudley	
et	al.,	2017),	but	these	zones	might	be	refined	considering	the	pat-
terns	 observed	 here.	 More	 sampling	 on	 each	 island,	 particularly	

F IGURE  4  (a)	Variable	importance	and	(b)	I-	splines	showing	changes	genetic	distance	along	environmental	gradients	as	modeled	by	
generalized	dissimilarity	modeling.	Splines	reaching	higher	values	have	higher	importance.	I-	spline	plot	for	rock	substrate	age	is	not	shown	
because	all	coefficients	equal	zero
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the	smaller	islands,	would	help	to	better	define	the	composition	of	
different	 clusters	 on	 islands	 with	 mixed	 composition.	 The	 strong	
genetic	 structure	 also	 offers	 an	 opportunity	 to	 further	 explore	
local	adaptation	among	groups	and	exploit	 these,	and	crosses,	 for	
agroforestry.

We	 have	 found	 that	 rainfall	 is	 a	 major	 force	 shaping	 variation	
within	the	island	of	Hawaii.	Whether	this	pattern	is	driven	by	demo-
graphic	 forces	 related	 to	 rainfall	 (e.g.,	via	phenology)	or	due	 to	nat-
ural	 selection	 and	 local	 adaptation,	 we	 expect	 that	 climate	 change	
will	exert	pressure	on	populations	in	areas	where	rainfall	regimes	will	
change	most.	These	vulnerable	areas	might	be	candidates	to	consider	
moving	genotypes	(Aitken	&	Whitlock,	2013)	from	other	regions	that	
are	“preadapted”	to	the	expected	future	conditions	(e.g.,	moving	gen-
otypes	from	dry	regions	to	vulnerable	areas	where	rainfall	will	decline	
following	associations	observed	in	GDM	and	GF).	More	generally,	the	
strong	genetic	differences	within	the	island	of	Hawaii	along	gradients	
can	guide	plantings	even	when	considering	only	present	patterns.	For	
example,	previously	proposed	ecologically	based	seed	zones	(Dudley	
et	al.,	2017)	might	be	refined	to	account	for	the	axes	of	variation	ob-
served	here.

We	 show	 the	 utility	 of	 predictive,	 nonlinear	 association	 model-
ing	for	identifying	vulnerable	and	resilient	populations.	However,	our	

findings	 should	 be	modified	 as	 better	 downscaled	 climate	 data	 are	
developed	to	account	for	unique	aspects	of	Hawaii	that	may	not	be	
well	accounted	for	in	global	circulation	models.	To	the	extent	that	the	
models	used	here	are	accurate,	we	 identify	specific	regions	for	con-
cern.	Overall,	 this	approach	can	be	readily	applied	to	guide	planting	
strategies	for	any	species	of	conservation	or	economic	interest	utiliz-
ing	genomic	(e.g.,	RAD-	Seq/GBS)	data.
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