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Fig. 7. Biocompatibility test (collagen scaffold). (a) & (b) Cell growth under
static condition. (c) & (d) Cell growth under flow. (a) & (c) Imaging results
for cell nuclei stain (DAPI). (b) & (d) Imaging results for cell cytoskeleton
(F-actin with phalloidin).

Fig. 8. Shear rate map in collagen scaffold. The shear rate map corre-
sponding to the flow under which cells were cultured in the collagen scaffold
was obtained using NMR velocimetry.

corresponding shear rate maps as measured experimentally
using the NMR velocimetry technique [18], [20], [19]. We
observe excellent agreement in the generated patterns between
theory and experiments. Using NMR feedback, the algorithm
can easily adapt to fine tune the moderate range variations due
to the adaptive properties demonstrated earlier in Fig. 5(d-f)
and Fig. 6.

IV. DISCUSSION

Tissue engineering studies of the effects of shear flows have
been hampered by the lack of suitable platforms to control
flow fields. Previous attempts at controlling mechanical forces
were limited to altering the scaffold structure and bioreactor
geometry. Most bioreactors used to date have been designed to
operate with a single inlet. Parameters such as perfusion rate,
flow, and mechanical stress are typically selected by trial-and-
error. Even then, due to many sources of variability, a protocol

that works to bring a particular construct to a desired stage may
likely fail to work for another construct [27]. Thus, the im-
portance of adaptive control with feedback. Given a feedback
mechanism, many possible solutions, e.g., single parameter
control, or a proportional-integral-derivative controller, may
exist for a single-inlet bioreactor. However, a single inlet does
not permit fine tuning of the flow field at the microscale, which
is an essential element for the study of cellular responses
to flow. Bioreactors with multiple inlets, such as the one
presented herein, reduce the need for engineering the scaffold
material properties, may alleviate manufacturing complexity
while enabling the creation of more accurate and complex flow
fields. Spatiotemporal control of mechanical force distributions
in scaffolds can be used to dynamically control the bioreactor
for applications in TE.

Because the relationship between shear maps and inlet
pressure is highly nonlinear, the task of finding a set of inlet
pressures to generate a desired flow pattern in a 10-inlets
bioreactor is a complex adaptive control problem possessing
no known analytical solutions. The adaptive control algorithm
presented herein solve the problem numerically. The algorithm
demonstrates high efficiency, as it converges to a solution
with a small number of iterations. Furthermore, it can learn
complex input/output relationships between inlet flow speeds
and mechanical force distributions, which gives it the ability
to quickly adapt to changes.

V. CONCLUSION

The concepts presented here are general and could be
applied to controlling any other force field, or the flow of
substances (e.g., nutrients, gases). Although not demonstrated
here, scaffold structure, bioreactor geometry and inlet positions
can easily be included as additional parameters to be optimized
along with inlet speeds. An interesting open question would
be to verify what shear rate distributions lead to tissue devel-
opment in a bioreactor scaffold beyond initial stages of cell
growth. A possible extension of this work to provide additional
control of the flow patterns would be to add multiple outlets
to the bioreactor; outlets add more degrees of freedom to the
problem where pressure can be released locally.
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of 1.5 mm/s, and inlets [1, 2, 4, 5, 6 & 7] have zero flow speed. (e) & (f) are NMR and CFD simulation results, respectively, where inlets [4, 5, 8, 9 & 10]
have zero flow speed, inlets [6 & 7] have a flow speed of 1 mm/s, and inlets [1, 2 & 3] have a flow speed of 0.5 mm/s.
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