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Abstract 

Bayesian Analogy with Relational Transformations (BART) 
is a discriminative model that can learn comparative relations 
from non-relational inputs (Lu, Chen & Holyoak, 2012). Here 
we show that BART can be extended to solve inference 
problems that require generation (rather than classification) of 
relation instances. BART can use its generative capacity to 
perform hypothetical reasoning, enabling it to make quasi-
deductive transitive inferences (e.g., “If A is larger than B, and 
B is larger than C, is A larger than C?”). The extended model 
can also generate human-like instantiations of a learned 
relation (e.g., answering the question, “What is an animal that 
is smaller than a dog?”). These modeling results suggest that 
discriminative models, which take a primarily bottom-up 
approach to relation learning, are potentially capable of using 
their learned representations to make generative inferences. 

Keywords: Bayesian models; generative models; 
discriminative models; relation learning; transitive inference; 
deduction; induction; hypothetical reasoning 

Introduction 

Generative and Discriminative Models 

Bayesian models of inductive learning can be designed to 

focus on learning either the probabilities of observable 

features given concepts (generative models) or the 

probabilities of concepts given features (discriminative 

models; Friston et al., 2008; Mackay, 2003).  Generative 

models are especially powerful as they are capable of not 

only classifying novel instances of concepts (using Bayes’ 

rule to invert conditional probabilities), but also generating 

representations of possible instances. In contrast, 

discriminative models focus directly on classification tasks, 

but do not provide any obvious mechanism for making 

generative inferences. 

In recent years, generative Bayesian models have been 

developed to learn complex concepts based on relational 

structures (e.g., Goodman, Ullman & Tenenbaum, 2011; 

Kemp & Jern, 2009; Kemp, Perfors & Tenenbaum, 2007; 

Tenenbaum, Kemp, Griffiths & Goodman, 2011). 

Representations of alternative relational structures are used 

to predict incoming data, and the data in turn are used to 

revise probability distributions over alternative structures. 

The highest level of the structure typically consists of a 

formal grammar or a set of logical rules that generates 

alternative relational “theories”, which are in turn used to 

predict the observed data. That is, the set of possible 

relational structures is provided to the system by specifying 

a grammar that generates them. 

Despite their impressive successes, there are some reasons 

to doubt whether the generative approach provides an 

adequate basis for all psychological models of relation 

learning. Since the postulated grammar of relations is not 

itself learned, the generative approach implicitly makes 

rather strong nativist assumptions. Moreover, generative 

models of relation learning do not fit the intuitive causal 

direction. For example, it seems odd to claim that a binary 

relation such as larger than somehow acts to causally 

generate an ordered pair (e.g., <dog, cat>) that constitutes 

an instantiation of the relation. It seems more natural to 

consider how observable features of the objects in the 

ordered pair give rise to the truth of the relation, i.e., to 

apply a discriminative approach. 

Discriminative Models of Relation Learning 

Recently, discriminative models have also been applied to 

relation learning. Silva, Heller, and Ghahramani (2007) 

developed a discriminative model for relational tasks such 

as identifying classes of hyperlinks between webpages and 

classifying relations based on protein interactions. Although 

their model was developed to address applications in 

machine learning, the general principles can potentially be 

incorporated into models of human relational learning. One 

key idea is that an n-ary relation can be represented as a 

function that takes ordered sets of n objects as its input and 

outputs the probability that these objects instantiate the 

relation. The model learns a representation of the relation 

from labeled examples, and then applies the learned 

representation to classify novel examples. A second key 

idea is that relation learning can be facilitated by 

incorporating empirical priors, which are derived using 

some simpler learning task that can serve as a precursor to 

the relation learning task. 

These ideas were incorporated into Bayesian Analogy 

with Relational Transformations (BART), a discriminative 

model that can learn comparative relations from non-

relational inputs (Lu, Chen & Holyoak, 2012). Given 
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independently-generated feature vectors representing pairs 

of animals that exemplify a relation, the model acquires 

representations of first-order comparative relations (e.g., 

larger, faster) as weight distributions over the features. 

Learning is guided by empirical priors for the weight 

distributions derived from initial learning of one-place 

predicates (e.g., large, fast). BART’s learned relations 

support generalization to new animal pairs, allowing the 

model to discriminate between novel pairs that instantiate a 

relation and those that do not. Moreover, BART’s learned 

weight distributions can be systematically transformed to 

solve analogies based on higher-order relations (e.g., 

opposite). 

BART has thus demonstrated promise as a discriminative 

model of relation learning, which does not presuppose an 

innate grammar of relations. However, the challenge 

remains to extend the model to tasks requiring generative 

inferences. For example, people are able to construct actual 

instantiations of relations, answering questions such as, 

“What is an animal that is smaller than a dog?” (Although 

one might suppose that such questions could be answered 

by undirected trial-and-error, we shall see that people’s 

answers are often systematically guided by their 

representations of the relation and of the animal provided as 

a cue.) Another challenging task is purely hypothetical 

reasoning, which requires making inferences about arbitrary 

instances of the relation. Comparative relations such as 

larger exhibit the logical properties of transitivity and 

asymmetry, supporting deductions such as “If A is larger 

than B, and B is larger than C, then A is larger than C.” 

Children as young as five or six years can make such 

transitive inferences reliably (Halford, 1992; Goswami, 

1995; Kotovsky & Gentner, 1996). In the present paper we 

describe an extension of the BART model that addresses 

these challenges of making generative inferences. 

BART Model of Relation Learning 

Domain and Inputs 

We focus on the same domain and inputs used in the initial 

BART project (Lu et al., 2012): the domain of comparative 

relations between animal concepts (e.g., a cow is larger than 

a sheep). To establish the “ground truth” of whether various 

pairs of animals instantiate different comparative relations, 

Lu et al. used a set of human ratings of animals on four 

different continua (size, speed, fierceness, and intelligence; 

Holyoak & Mah, 1981). These ratings made it possible to 

test the model on learning eight different comparative 

relations: larger, smaller, faster, slower, fiercer, meeker, 

smarter, and dumber. 

Each animal concept is represented by a real-valued 

feature vector. In order to avoid the perils of hand-coded 

inputs (i.e., the possibility that the model’s successes may 

be partly attributable to the foresight and charity of the 

modelers), we use what we call “Leuven vectors.” These 

representations are derived from norms of the frequencies 

with which participants at the University of Leuven 

generated features characterizing 129 different animals (De 

Deyne et al., 2008; see Shafto, Kemp, Mansinghka, & 

Tenenbaum, 2011). Each animal in the norms is associated 

with a set of frequencies across more than 750 features. We 

created vectors of length 50 based on the 50 features most 

highly associated with the subset of 44 animals that are also 

in the ratings dataset (Lu et al., 2012). Figure 1 provides a 

visualization (for 30 example animals and the first 15 of the 

50 features) of these high-dimensional and distributed 

representations, which might be similar to the 

representations underlying people’s everyday knowledge of 

various animals. 

 

 

Figure 1: Illustration of Leuven vectors (reduced to 15 

features to conserve space) for some example animals. The 

cell intensities represent feature values (light indicates high 

values and dark indicates low values). 

Relations as Weight Distributions 

BART represents a relation using a joint distribution of 

weights, w, over object features. A relation is learned by 

estimating the probability distribution ,( ,| )P
S S

Rw X  where 

S
X  represents the feature vectors for object pairs in the 

training set, the subscript S indicates the set of training 

examples, and S
R

 
is a set of binary indicators, each of 

which (denoted by R) indicates whether a particular object 

(or pair of objects) instantiates the relation or not. The 

vector w constitutes the learned relational representation, 

which can be interpreted as weights reflecting the influence 

of the corresponding feature dimensions in X on judging 

whether the relation applies. The weight distribution can be 

updated based on examples of ordered pairs that instantiate 

the relation. Formally, the posterior distribution of weights 

can be computed by applying Bayes’ rule using the 

likelihood of the training data and the prior distribution for 

w: 
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The likelihood is defined as a logistic function for 
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The prior, P(w), is a Gaussian distribution and is 

constructed using a bottom-up approach in which initial 

learning of simple concepts provides empirical priors that 

guide subsequent learning of more complex concepts. 

Specifically, BART extracts empirical priors from weight 

distributions for one-place predicates such as large to guide 

the acquisition of two-place relations such as larger. Lu et 

al. (2012) trained BART on the eight one-place predicates 

(e.g., large, small, fierce, meek) that can be formed using 

the extreme animals at each end of the four relevant 

continua (size, speed, ferocity, and intelligence). 

After learning the joint weight distribution that represents 

a relation, BART discriminates between pairs that 

instantiate the relation and those that do not by calculating 

the probability that a target pair Tx  instantiates the relation 

R: 

 
( 1| , , )

( 1| , ) ( | , ).

T T

T T

P R

P R P

 



S S

S S
w

x X R

x w w X R
 (3) 

Although the general framework of the relation learning 

model is straightforward, the calculations of the 

normalization term in Eq.  (1) and the integral in Eq. (3) are 

intractable, lacking analytic solutions. As in Silva, Heller, 

and Gharamani (2007), we employed the variational method 

developed by Jaakkola and Jordan (2000) for Bayesian 

logistic regression to obtain closed-form approximations to 

the posterior weight distribution ,( )|P
S S

X Rw  and the 

predictive probability ( 1| , , ).T TP R 
S S

x X R   

Extension to Generative Inference 

The goal of the present paper is to endow BART with 

generative abilities, allowing it (for example) to complete a 

partially-instantiated relation, answering questions such as, 

“What is an animal that is smaller than a dog?” We use the 

weight representation for a relation learned by BART to 

construct a new generative model for the completion task. 

When presented with a cue relation (e.g., smaller) and a cue 

object (e.g., dog), the model produces possible responses for 

the remaining object (e.g., cat) so that the ordered object 

pair satisfies the relation. More specifically, given the 

features of an object B, ,Bx  and the knowledge that relation 

R holds for the object pair (A, B), the model generates a 

probability distribution for the features of object A, ,Ax  by 

making the following inference: 

      | , 1 1| , | .B A B A BAP R P R P  x x x x x x  (4) 

The likelihood term,  1| , ,A BP R  x x  is the probability 

that relation R holds for a particular hypothesized object A, 

,Ax  and the known object B, .Bx  It is defined using a 

logistic function, just as in Eq. (2): 

  
1 2

1
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e
 

 


T Tw x w x
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Relative to Eq. (2), we have only introduced small 

differences in the notation. The learned relational weights, 

w, are written as two separate halves: weights associated 

 
 

Figure 2: Illustration of the generative model for inferring 

an animal that is larger than a sheep. Colors annotate 

probability densities (red indicates high values and blue 

indicates low values). The top panel shows the prior and 

posterior distributions with 2 7   (favoring similarity-

based completions such as cow), and the bottom panel 

shows the prior and posterior with 2 25   (favoring 

“landmark” completions such as elephant). Various animals 

are represented in the two-dimensional space based on their 

size and speed ratings. The posterior was generated using 

the relational weights that BART learned from the full 

ratings input (i.e., all four dimensions). 

 

with the first relational role ( 1w ) and weights associated 

with the second relational role ( 2w ). Similarly, the feature 

vector x for a pair of objects is separated into the feature 

vector for object A ( Ax ) and the feature vector for object B  

( Bx ). 

The prior for the features of object A,  | ,BAP x x  is the 

conditional distribution given the features of object B. It is 

defined as the following: 

    2, .|A B BNP x xx I  (6) 

We assume that object B (the referent) serves a starting 

point for generating object A, so the means of  | BAP x x  

are taken to be the feature values of object B, reflecting a 

certain degree of semantic dependency between the two 

objects (i.e., people’s tendency to think of A objects that are 

similar to B). The prior also encodes the assumptions that 

the features of A are uncorrelated and have the same 

variance 
2 ,  the value of which is a free parameter 

reflecting the strength of the model’s preference for 

generating A objects that are similar to B. 

Our generative model infers a feature distribution for 

object A that reflects a compromise between (1) maximizing 
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the semantic similarity of A and B, which is reflected in the 

prior term; and (2) maximizing the probability that the 

relation holds, which is reflected in the likelihood term. We 

adapted the variational method to estimate the posterior 

distribution, using the following update rules for the mean μ 

and covariance matrix V of the feature distribution, as well 

as the variational parameter ξ: 
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Figure 2 illustrates the operation of the model in 

generating an animal (A) that is larger than a sheep (B). The 

feature distribution for A is updated from a prior favoring 

some degree of similarity between the two animals (left 

panel; top: high similarity, bottom: low similarity) to a 

posterior distribution after taking into consideration the 

relation (i.e., larger) instantiated by the animals (right 

panel). These distributions are shown in a simplified two-

dimensional feature space (the size and speed ratings for 

animals; Holyoak & Mah, 1981).  

Modeling Transitive Inference 

Comparative relations such as larger exhibit the logical 

properties of transitivity and asymmetry, supporting 

deductions such as, “If A is larger than B and B is larger 

than C, then A is larger than C.”  Such hypothetical 

reasoning seems to depend on the ability to generate 

arbitrary instantiations of the relation without any guidance 

from object features (as the object representations are 

semantically empty). Our first test evaluated whether the 

generative extension of BART enables transitive inferences 

on comparative relations using arbitrary hypothetical 

instances. 

Operation of the Model 

The basic approach to transitive inference is 

straightforward: The model “imagines” objects A, B, and C 

that instantiate the two given premises, as in the example 

above, and then tests the unstated relationship for the pair 

<A, C>. If the larger relation that BART has learned is 

indeed transitive, then any such instantiation will satisfy the 

conclusion, “A is larger than C.” This test is done 

repeatedly, in essence searching for a counterexample. If no 

counterexample is ever found, the transitive inference is 

accepted. 

Specifically, for each of the eight comparative relations 

that BART learned, we first let the model “imagine” an 

animal B (because the statement “A is larger than B” implies 

that B is the referent against which A is being compared) by 

sampling a feature vector from a distribution representing 

the animal category. This is a Gaussian distribution with a 

mean vector and covariance matrix that were directly 

estimated from the feature vectors of the 44 animals in the 

Leuven dataset that are included in the ratings dataset. 

Given the sampled animal B, the generative model 

constructs a distribution for animal A (e.g., to satisfy the 

premise that “A is larger than B”) by letting B fill the second 

role of the relevant relation. Similarly, the model constructs 

a distribution for animal C (e.g., to satisfy the premise that 

“B is larger than C”) by letting B fill the first role of the 

same relation. Next, the model creates feature 

representations for specific animals A and C by setting their 

feature vectors, Ax  and ,Cx  to be the means of the inferred 

feature distributions for A and C, respectively. Note that 

these “imagined” animals are hypothetical: although their 

features are sampled from the distribution of animal 

features, the results will seldom correspond to actual 

animals. To ensure that the premises have actually been 

satisfied, the model accepts the imagined animal A only if 

( 1| , ) 0.5BAP R  x x  and ( 1| , ) 0.5,ABP R  x x  and the 

imagined animal C only if ( 1| , ) 0.5B CP R  x x  and 

( 1| , ) 0.5.C BP R  x x  

Finally, if Ax  and Cx  have been accepted as satisfying 

the premises, the model calculates both ( 1| , )CAP R  x x , 

denoting the probability that A is larger than C, and 

( 1| , ),ACP R  x x denoting the probability that C is larger 

than A.  The model concludes that the relation holds for the 

pair <A, C> (and not for <C, A>) if ( 1| , ) 0.5CAP R  x x  

and ( 1| , ) 0.5,C AP R  x x
 
implying that a counterexample 

has not yet been found to refute the transitive inference.  

We conducted tests of transitive inference using the 

relational representations that BART learned based on 100 

randomly-chosen training pairs. For comparison, we also 

tested a baseline model that substituted an uninformative 

prior for the empirical prior that guides BART’s relation 

learning (see Lu et al., 2012). For each of the eight 

comparative relations, the relation learning model was run 

ten times, each time with a different set of training pairs and 

resulting in a different learned weight distribution. For each 

of these learned weight distributions, we let the model 

generate 100 A-B-C triads satisfying the premises, testing 

the relevant relationship between A and C for each triad. To 

assess the influence of the free parameter in model 

predictions, the tests were conducted multiple times with 

different values of 
2  ranging from 1 to 1000. The 

strongest tests are those in which 
2  is set at low values, 

creating a strong prior preference that A, B, and C are 

similar to one another. When the similarity constraint is 

strong, the model is forced to generate animals that are 

similar on the relevant dimension, and hence more likely to 

yield a counterexample. When the value of 
2  was reduced 

below 1, the models produced many instantiations that did 

not satisfy the required premises (i.e., A > B, B > C, and not 

vice versa). We therefore treated the value of 1 as the 
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minimal value of 2  that yields triplets of animals with 

discriminable values on the relevant dimension. 

Results and Discussion 

Figure 3 shows the mean proportion correct (i.e., the mean 

proportion of triads that satisfy the conclusion based on 

transitive inference) for BART and the baseline model as a 

function of 2 . These results are averaged over the eight 

comparative relations. The critical result is that the BART’s 

accuracy remains constant at 100% as 2  is reduced to the 

effective minimal value of 1. Thus, BART demonstrates 

what may be considered an inductive approximation to 

deduction: despite exhaustive search for a counterexample 

to the transitive inference, no counterexample is ever found. 

In contrast, the baseline model often fails to infer that A > C 

(and not vice versa) even when the value of 2  is as large 

as 100. 

 
Figure 3: Mean proportion correct on the transitive 

inference task for BART and baseline model, as a function 

of the variance parameter. These results are averaged across 

the eight comparative relations. 

Animal Generation Task 

A second evaluation of the model involves predicting the 

distribution of human responses in an animal generation 

study conducted using Amazon Mechanical Turk. In this 

free-generation study, participants typed responses to 

queries of the form, “Name an animal that is larger than a 

dog.” They were instructed to enter the first animal that 

came to mind. Four comparative relations (larger, smaller, 

faster, and slower) and nine cue animals (shark, ostrich, 

sheep, dog, fox, turkey, duck, dove, and sparrow) were 

used. At least 50 responses were collected for each of the 36 

relation-animal pairs. To minimize learning across trials, we 

asked each participant to answer only two questions about a 

single animal: either larger and then slower, slower and 

then larger, faster and then smaller, or smaller and then 

faster. 

The same relation-animal pairs were presented to the 

model after it had been trained on the relevant relations. For 

each question, the model produces a continuous posterior 

distribution for the feature vector of the missing animal 

using Eq. (4). This distribution was used to calculate the 

probability densities for the feature vectors of all animals 

among the human responses that had Leuven vectors. These 

probability densities were normalized to produce a discrete 

 
Figure 4: Observed human response proportions and 

BART’s predictions for the queries, “Name an animal that is 

smaller than a dog” (top), and “Name an animal that is 

slower than a dog” (bottom).  

 

probability distribution over the animals included in the 

human responses. The model’s predicted probabilities were 

averaged across the ten runs. 

The human results were complex, and here we report only 

a partial and preliminary attempt to make a comparison with 

model predictions. Qualitatively, human responses were 

dominated by two trends: (1) reporting an animal similar to 

the cue animal and fitting the cue relation (e.g., cat for 

“smaller than a dog”), or (2) reporting a “landmark” animal 

at an extreme of the continuum (e.g., turtle for “slower than 

a dog”). The landmark animal coupled with the cue animal 

provides an ideal example of the cue relation.  This tradeoff 

between reporting animals that are similar to the cue animal 

and reporting animals that are landmarks for the cue relation 

(and usually more dissimilar to the cue animal) is captured 

by the single free parameter in the generative module, 2.  

As explained earlier (see Figure 2), a low 2  results in a 

response distribution that favors animals similar to the cue 

animal, whereas a high 2  leads to a preference for 

response animals that are more likely to satisfy the cue 

relation with respect to the cue animal (i.e., landmark 

animals for the cue relation). 

To reflect the unique pattern of human responses to each 

question, the variance parameter in the generative model 

was chosen separately for each question (from the values, 1, 

5, 10, 50, and 100) to maximize the average of Pearson’s r 

and Spearman’s ρ (rank-order) correlations between the 

model’s predicted probabilities and the observed response 

proportions for that question. Here we present results for 

two illustrative questions. The top panel of Figure 4 shows 

the model’s predicted response distribution and the human 

response distribution for the request, “Name an animal that 

is smaller than a dog.” The human response pattern reveals a 

strong influence of semantic similarity between the cue 
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animal and generated animal. The most common human 

response was cat, followed by mouse (the landmark animal 

for the smaller relation). With 2  = 10, the correlation 

between the model predictions and the human response 

pattern was r = .76. 

The bottom panel of Figure 4 depicts the model 

predictions and human response pattern for the request, 

“Name an animal that is slower than a dog.” For this 

question, the most common response was the landmark 

animal turtle. With 2  = 50, the correlation between the 

model predictions and the human response pattern was r = 

.72. The higher variance assumed for this question (relative 

to that for the smaller question) reflects the dominance of 

the landmark response for the slower question. 

Note that even though the two questions use the same cue 

animal (dog), different sets of animals were generated 

depending on the cue relation, revealing that humans do 

take relations into consideration in this free generation task. 

The model showed a similar pattern of results. 

Conclusions 

These results provide initial evidence that a discriminative 

model of relation learning, BART (Lu et al., 2012), can be 

extended to yield generative inferences. These inferences 

can involve relations between either hypothetical (in the 

case of transitive inference) or actual (in the case of the 

animal generation task) objects. In the latter free generation 

task, preliminary analyses indicate that BART achieves 

some success in modeling human response patterns. 

The model’s ability to make transitive inferences based on 

relations it has learned in a bottom-up fashion from 

examples illustrates the potential power of the 

discriminative approach to relation learning. Importantly, 

BART is not endowed with any notion of what a “transitive 

and asymmetric” relation is (though like a 6-year-old child, 

it is endowed with sufficient working memory to integrate 

two relations as premises). Rather, it simply uses its learned 

comparative relations to imagine possible object triads, and 

without exception concludes that the inference warranted by 

transitivity holds in each such triad. The model thus 

approximates “logical” reasoning by a systematic search for 

counterexamples (and failing to find any), akin to a basic 

mechanism postulated by the theory of mental models 

(Johnson-Laird, 2008). The fact that BART achieves error-

free performance in the tests of transitive inference is 

especially impressive given that its inductively-acquired 

relational representations are most certainly fallible (e.g., 

the model makes errors in judging which of two animals 

close in size is the larger; see Lu et al., 2012). It turns out 

that imperfect representations of comparative relations, 

acquired by bottom-up induction, can be sufficiently robust 

as to yield reliable quasi-deductive transitive inferences.  
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