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Joints and their relations as critical features in action
discrimination: Evidence from a classification image method
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Classifying an action as a runner or a walker is a seemingly
effortless process. However, it is difficult to determine
which features are used with hypothesis-driven research,
because biological motion stimuli generally consist of
about a dozen joints, yielding an enormous number of
potential relationships among them. Here, we develop a
hypothesis-free approach based on a classification image
method, using experimental data from relatively few
trials (~1,000 trials per subject). Employing ambiguous
actions morphed between a walker and a runner, we
identified three types of features that play important
roles in discriminating bipedal locomotion presented in a
side view: (a) critical joint feature, supported by the
finding that the similarity of the movements of feet and
wrists to prototypical movements of these joints were
most reliably used across all participants; (b) structural
features, indicated by contributions from almost all other
joints, potentially through a form-based analysis; and (c)
relational features, revealed by statistical correlations
between joint contributions, specifically relations
between the two feet, and relations between the wrists/
elbow and the hips. When the actions were inverted, only
critical joint features remained to significantly influence
discrimination responses. When actions were presented
with continuous depth rotation, critical joint features and
relational features associated strongly with responses.
Using a double-pass paradigm, we estimated that the
internal noise is about twice as large as the external
noise, consistent with previous findings. Overall, our
novel design revealed a rich set of critical features that
are used in action discrimination. The visual system
flexibly selects a subset of features depending on viewing
conditions.
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The remarkable sensitivity of humans to biological
motion has inspired a great deal of research directed at
revealing critical visual features and robust represen-
tations used by the visual system to perceive biological
movement (e.g., Cutting & Kozlowski, 1977; Johans-
son, 1973). This research has shown that humans can
extract complex information from very impoverished
biological motion displays (e.g., identity [Cutting &
Kozlowski, 1977], emotion [Dittrich, Troscianko, Lea,
& Morgan, 1996; Pollick, Paterson, Bruderlin, &
Sanford, 2001], and type of action [Brown et al., 2005;
Dittrich, 1993; Ma, Paterson, & Pollick, 2006; Norman,
Payton, Long, & Hawkes, 2004; van Boxtel & Lu,
2011)).

Research in past decades suggests that the visual
system employs two types of processing to accomplish
this feat (Thornton, Pinto, & Shiffrar, 1998). The first
type of processing is based on relational characteristics
of multiple joints, which provide structural information
in biological motion. For example, spatially scrambling
or inverting an action animation makes biological
motion harder to recognize or detect (Bertenthal &
Pinto, 1994; Dittrich, 1993; Mark Williams, Huys,
Canal-Bruland, & Hagemann, 2009; Pavlova & Soko-
lov, 2000; Proffitt & Bertenthal, 1990; Sumi, 1984),
whereas making local motion information less infor-
mative (but not completely uninformative; Casile &
Giese, 2005) does not hinder action perception (Bein-
tema & Lappe, 2002). Others have shown that changing
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limb configurations decreases performance in recog-
nizing biological motion (Neri, 2009b; Pinto & Shiffrar,
1999), suggesting that some holistic information is
provided by the correlated movements of the joints
within a single limb.

The second type of processing is sensitive to
information provided by the movements of some
particular joints. For example, the feet have been
shown to be very important in identifying the walking
direction of a walker (Mather, Radford, & West, 1992;
Thurman, Giese, & Grossman, 2010; Thurman &
Grossman, 2008; Troje & Westhoff, 2006). More
specifically, certain characteristics of the trajectories
followed by the feet are critical in this type of
discrimination task (Saunders, Suchan, & Troje, 2009),
possibly more related to the velocity profile than to the
exact shape of the trajectory (Hill & Pollick, 2000;
Thurman & Lu, 2013a). Other work suggests that a
potent cue in detecting walker stimuli is the presence of
opponent motion signals (e.g., Casile & Giese, 2005;
Thurman & Grossman, 2008). In ordinary circum-
stances, opponent motion is produced by the counter-
phase motion of the limbs in natural human
movements. However, even when opponent motion is
introduced as part of an artificial stimulus, it can give
the impression of biological motion (Casile & Giese,
2005). The dependency of biological motion perception
on the two types of processing is further evidenced by a
recent finding that the vertical position of the joint
trajectories within the global layout of an action has a
strong influence on the discrimination of walking
direction (Hirai, Chang, Saunders, & Troje, 2011).

Given the involvement of different types of pro-
cessing in biological motion perception, it is reasonable
to expect that multiple sets of features play important
roles in determining people’s judgments when observ-
ing a particular biological motion stimulus. How can
we determine in more detail which critical features are
used by the visual system in recognizing biological
motion? Typical approaches examine whether changes
in certain stimulus parameters affect performance in
perceiving biological motion, as measured by accuracy
or response time. Measuring performance change as a
function of certain stimulus parameters can indeed
provide important evidence about whether those
parameters affect the perception of biological motion.
However, overall performance as measured by aver-
aging responses across many trials is not sufficient to
identify which aspects of the visual stimuli lead to a
particular response on any individual trial.

In addition to these measurement-related issues,
most studies in the literature have employed a
hypothesis-driven approach. Although this approach
can provide direct evidence to confirm or reject some
specific hypothesis, in the case of biological motion
perception, this general approach suffers from the
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classical “curse of dimensionality”: biological motion
stimuli have a large action space due to the many
degrees of freedom in joint movements and the
articulated body structure. It is therefore very difficult
to test all possible parameter combinations or to make
specific predictions. Hence, a data-driven approach
may provide a complementary means as an association
detector to extract the linkage between the presence of
critical features in a complex input stimulus and a
categorical output response. With the data-driven
approach, the researcher does not limit the possible
outcomes by designing an experiment such that it tests
one specific hypothesis. Instead, the experiment allows
the possibility for discovering many potentially inter-
esting results.

A useful approach for this type of hypothesis-free
experimentation is the classification image (CI) method
(Ahumada Jr., 2002; Ahumada & Lovell, 1971; Beard
& Ahumada, 1998; Eckstein & Ahumada, 2002; Neri &
Levi, 2006). Although the internal representation of
biological motion is not directly observable, it can be
estimated by measuring the influence of certain
characteristics of input stimuli on observers’ responses.
Specifically, CI methods examine trial-by-trial perfor-
mance variations attributable to known amounts of
noise added to stimuli, by computing the association
between the noise and the observer’s response (Ahu-
mada Jr., 2002; Ahumada & Lovell, 1971; Gold,
Murray, Bennett, & Sekuler, 2000; Victor, 2005).

In biological motion research, the CI approach has
been used in several studies (H. Lu & Liu, 2006;
Thurman et al., 2010; Thurman & Grossman, 2008;
Thurman & Lu, 2013b). Results in some of these
studies suggested that all joints contribute to detection
of biological motion in luminance noise (H. Lu & Liu,
2006). Other studies used more refined judgments (e.g.,
walking direction discrimination) to reveal that the feet
and wrist joints contribute most (Thurman et al., 2010;
Thurman & Grossman, 2008; Thurman & Lu, 2013b).
In all of these studies, as in similar approaches applied
to face perception (e.g., Dupuis-Roy, Fortin, Fiset, &
Gosselin, 2009; Kontsevich & Tyler, 2004), researchers
have used luminance (pixel) manipulations to derive
dynamic CIs based on >10,000 trials from one human
participant to produce interpretable results. This
inefficiency is largely due to the high dimensionality of
added noise fields (i.e., adding pixel noise in image
frames). Another limitation of previous CI studies is
that the noise is added in a dimension (often
luminance) along which biological motion perception is
known to be invariant, which may weaken the
successful application of CI methods in discovering
some refined but important features involved in the
perception of biological motion.

However, the efficiency of CI methods can be
improved dramatically by selecting an appropriate
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experimental design and developing advanced tech-
niques for data analysis. One effective method of
increasing the power of ClIs is dimensionality reduc-
tion—selection of subspaces that are likely to contain a
large signal-to-noise ratio (Eckstein & Ahumada, 2002;
Ringach, Sapiro, & Shapley, 1997; Victor, 2005). For
example, by reducing the dimensionality of positional
noise, Li, Levi, and Klein (2004) successfully recovered
ClIs for position discrimination using just 750 trials. In
a different approach, Ringach et al. (1997) incorpo-
rated a priori information in the design of the stimulus
set to reduce the dimensionality of the input space,
thereby effectively reconstructing veridical receptive
fields of neurons using the reverse correlation between
the input image sequence and the cell’s spike train
output. Another efficient method is to incorporate a
priori knowledge about the target and dependency of
input dimensions to allow pattern analysis in calculat-
ing Cls, rather than treating input dimensions inde-
pendently as in the standard CI calculation (Neri, 2004;
Victor, 2005).

The present article extends these methodological
advances in the CI method to examine action
discrimination, using a task in which observers view a
morphed point-light action and classify it as a walker
or a runner. To reduce the dimensionality of the
analysis, we added noise to the morph weights of 13
joints in an action space, rather than introducing
luminance noise in the image, as in previous studies.
We took two prototypical actions, walking and
running, and morphed each joint movement indepen-
dently between these two actions. The resulting mean
action is a 50%—50% morph to generate an ambiguous
action between walking and running. On different
trials, random Gaussian noise is added to introduce
probabilistic morphing values for each joint indepen-
dently. By adding noise to the joints in the action space
instead of in the image space, we reduce the dimen-
sionality of the CI analysis from thousands of
dimensions (the number of pixels in the image) to about
a dozen dimensions (the number of joints in a point-
light actor). We thereby achieve interpretable CI results
with many fewer trials (within hundreds of trials).
Altogether, this method allows us to investigate, in a
hypothesis-free manner, the importance of each of the
joints and their relations in an action classification task.

The present article advances the CI method to
reconstruct the critical features used by human
observers during action discrimination tasks. The first
experiment showed actions from a side view, a
common viewpoint used in most biological motion
research. In the second experiment, the actions were
continuously rotated in depth over time. In addition
to the viewpoint manipulation, a second independent
factor (global body orientation) was introduced in
both experiments. One condition consisted of intact
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and upright actions; the other condition presented the
inverted actions to reduce the involvement of struc-
tural processing in perception of biological motion. In
the inverted condition, the difficulty of recognizing
actions increases because of the reduced information
about the human form. Therefore, this condition
allows us to investigate whether critical features still
play a role in biasing action discrimination judgment
even with reduced familiarity to the inverted structure
of the human actor.

Methods
Participants

Twenty-two University of California, Los Angeles
(UCLA), undergraduate students participated in the
experiment for course credit. They were randomly
assigned to one of two experimental conditions (upright
and inverted). Two participants in the upright condi-
tion showed an extreme bias toward either walker or
runner response (more than 90% of the trials were
classified as walker or runner). These 2 participants
were not further analyzed, resulting in 10 participants
per condition (average age of 19.9 = 1.8, six men).

Stimuli

The motion capture data of walker/runner were
obtained from the Carnegie Mellon motion capture
database (http://mocap.cs.cmu.edu). The BioMotion-
Toolbox (van Boxtel & Lu, 2013) was used in
conjunction with the PsychToolbox (Brainard, 1997;
Pelli, 1997), to display point-light stimuli, with 13 white
dots (0.35°) representing the head, shoulders, hips,
elbows, wrists, knees, and feet. The point-light actor
was displayed from a sagittal (i.e., side) view, randomly
selected to be leftward- or rightward-facing on each
trial. The stimuli were 6° high and on average about 2—
3° wide, and they were displayed in the center of the
screen on a gray background. The refresh rate was 75
Hz. The starting frame was randomly selected on each
trial. We use orthogonal projections to display the
actions.

The stimulus was an action morphed between a
walker and a runner. The algorithm was adopted from
the spatiotemporal morphing model developed by
Giese and Poggio (2000). The morphed action was
generated by linearly combining the movement trajec-
tories of prototypical actions (walking and running) in
three-dimensional space. One morph parameter, 4,
controls the contributions of the individual prototyp-
ical actions to the linear combination of the algorithm,
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so that morphed action = A running + (1 — 1) walking,
with 4 between 0 and 1. Thus, the value of the morph
parameter controls the similarity of joint trajectories of
a morphed action to the movements in prototypical
actions. Other psychophysical studies used this algo-
rithm to measure the generalization fields of action
categories (Giese & Lappe, 2002) and to study action
adaptation (van Boxtel & Lu, 2013). Although walking
and running have different dynamics (Diedrich &
Warren, 1995), previous research has shown that, for
walking and running (and other bipedal locomotion),
human observers can easily categorize the morphed
actions, and they perceive them to be natural (Giese &
Lappe, 2002).

In contrast to previous studies, which assigned the
same morph value to all the joints, the present study
created a morphed action, with each joint having an
independently assigned morph value (see Figure 1A).
Morph values were randomly sampled from a trun-
cated Gaussian distribution with a mean of 0.5 and a
standard deviation of 0.25, and the sampled values
were bounded within 0 (walking) and 1 (running).
Adding randomly sampled morph values to individual
joints creates stimuli with added noise in a low
dimensional space (i.e., 13 in our study) but still
maintains sufficient trial-by-trial variations to derive
ClIs from participants’ responses (see Li et al., 2004, for
a similar approach in a position discrimination task).

As shown in Figure 1B, the experiment included two
conditions: (a) upright point-light actors with intact
body structure and (b) inverted point-light actors with
intact body structure.

Procedure

The experiment included 1,200 trials, each lasting 1 s,
containing exactly one walking/running cycle. The first
1,000 trials used stimuli that were generated according
to the morphing methods described above. The last 200
trials were trial-by-trial repetitions of trials 800 to
1,000, which were used to assess intraindividual
consistency, by calculating the proportion of identical
responses on identical trials. This double-pass proce-
dure allows the estimation of the internal noise inherent
to the system (i.e., the brain) relative to the external
noise added to the stimuli (Burgess & Colborne, 1988;
Z. L. Lu & Dosher, 2008; Neri, 2009a).

After the stimulus disappeared, participants were
asked to indicate whether the observed actor appeared
to be a walker or a runner, using the left or right arrow
keys on the keyboard. Before the experiment started,
all observers (including those assigned to the inverted
conditions) performed practice trials on upright actors
until they indicated they felt comfortable with the task
(generally 5-10 trials). They were then told to do the
same task on the stimuli that were presented in the
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experiment, regardless of the body orientation of the
actor. The entire experiment took about half an hour.

Analysis

A logistic regression model was used to analyze the
relationship between added morph values for individ-
ual joints and the participants’ responses (i.e., walker or
runner).' Given that the classification responses were
binary variables, logistic regression analysis incorpo-
rates a nonlinear function to estimate a weighted
combination of joint morph values in predicting the
probability for a “walker” response:

1
1+ e*(/))(ﬂrz Biti)

where i indicates the joint index. With 1,000 trials of
morph values used in stimulus generation and corre-
sponding responses, the maximum likelihood estima-
tion yielded two important assessments on (a) the
importance of the joints reflected by the regression
weights for joints (i.e., beta weights in the above logistic
equation) and (b) the relations between joints reflected
by the correlations between the beta weights (see Figure
2). The correlations between beta weights, obtained per
subject, shed light on how multiple joints were used
simultaneously and thus revealed important aspects of
relational processing in action discrimination.

The estimated beta weights of identical joints on
both sides of the body were averaged per subject
(except the head joint, which lacks a mirror-positioned
joint). This was done to increase sensitivity and because
the stimulus is ambiguous as to what is the left and
right side of the body. Similarly, correlations that were
in mirror positions were also averaged. The obtained
beta weights and correlation values were then used in
statistical analyses performed across subjects. We
performed one-sample two-tailed ¢ tests, which were
corrected for false discovery rate (Benjamini—-Hochberg
procedure) for the correlation analyses within each
experimental condition.

P(walker) =

Results
Cis for upright actors in a side view

Figure 3A shows the resulting Cls, including beta
weights and their correlations, for an upright actor in a
side view. The foot joints showed the most significant
contribution as revealed by the largest beta weight, #(9)
=9.58, p < 0.001, Cohen’s d = 3.0, indicating that the
similarity of the observed motion trajectories of the feet
to the prototypical movements played the most critical
role in discriminating walking from running, consistent
with previous findings (Mather et al., 1992; Thurman et
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Figure 1. Stimulus design. (A) Selection of morphing values. For each joint, a morphing value is drawn independently from a truncated
normal distribution, schematized at the bottom of Panel A. Each joint’s movement will be a morphed trajectory between walking and
running, based on the morphing weight drawn for that joint. The joints’ movements will be played together as a single morphed
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action (top). (B) Schematized stimuli in the intact and inverted conditions. To illustrate motion, the dot size is increased from frame to
frame and the color is changed from white to black. This is only for illustrational purposes; in the experiments, the dots’ appearance
remained unchanged. Every fifth frame is drawn, for the first 50 frames.

al., 2010; Thurman & Grossman, 2008; Troje &
Westhoff, 20006).

However, the feet were not the only joints showing
significant contributions in distinguishing walkers
from runners. In fact, most joints, except the hips and
the knees, are depicted with red-framed circles in
Figure 3A, because of the significantly positive beta
weights associated with these joints, indicative of a
contribution to the discrimination responses: head,
1(9) =2.35, p =0.04, Cohen’s d =0.7; shoulder, #(9) =
4.4, p=0.002, Cohen’s d =1.4; elbow, t(9) =2.3, p=
0.05, Cohen’s d =0.7; wrist, #(9) = 5.0, p < 0.001,
Cohen’s d = 1.6. This abundance of significant beta
weights for most joints suggests that, when viewing a
walker or a runner from a side view, the brain employs
a holistic structural processing. The coexistence of
critical joint features (e.g., feet) and holistic structural
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Figure 2. Logistic regression results. The logistic regression
returns a vector with regression weights. These weights are
representative of the importance of the joints to the
classification task. In the remainder of the article, these weights
are displayed on the joints of the walker (see e.g., Figures 3 and
4). The logistic regression also returns a correlation matrix, with
correlations between all joints. These are displayed as lines
between joints in the remainder of the article. This figure shows
the results averaged over subjects for the upright side view
condition. Stars indicate significance.

features (i.e., contributions of most joints were
significant) provides converging evidence that the
visual system identifies actions by using both local
mechanisms based on the most discriminative move-
ment features and global mechanisms based on
holistic structure.

However, it is worthwhile to note that some of the
significant contributions of joints obtained in the
current study may be specific to classifying a walker
from a runner. For example, the head was associated
with a significant weight, showing a significant contri-
bution to the response. This relationship is probably
due to the fact that during running, the actor’s head
leans more forward than during walking. Such a cue
from head movement or position may not be infor-
mative for, for example, judging forward/backward
walking direction; thus, head movements are unlikely
to be identified as critical features in that particular
task.

The resulting CIs for the upright actors in a side view
also signaled the presence of relational features through
significant correlations between the beta weights of
joints. There were two significantly positive correla-
tions between beta weights, depicted as colored lines in
Figure 3A. First, there was a significant correlation
between the two foot weights, #(9) = 4.3, p =0.0019,
Cohen’s d = 1.4, suggesting that observers use
information from both feet simultaneously when
performing the walking/running discrimination task.
The discovery of the relational feature from the
resulting Cls is consistent with previous findings about
the importance of opponent motion signals in identi-
fying actions involving bipedal locomotion (e.g., Casile
& Giese, 2005; Thurman & Grossman, 2008). The other
significant correlation was between the wrists and the
opposite hip joint, #(9) = 5.5, p =0.0004, Cohen’s d =
1.7. This correlation suggests that observers assess a
relational feature—the movement of the wrist relative
to the hips—to determine whether the actor is walking
or running (i.e., judging whether the wrist is low or
high, respectively, with respect to the hips). This
relational feature, to our knowledge, has not been
reported and examined in the literature. This finding
shows that humans employ a rich set of relational
features, not solely constrained by limbs and body
structure, to facilitate action discrimination.

In this experiment, we analyzed the last 400 (200 +
200) trials with the double-pass procedure to examine
the consistency of subject responses. We found that
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Figure 3. Classification data from the binomial logistic regression for Experiment 1. Biological motion actions were observed from a
side view. The upper panels show the trajectories of a single trial. The bottom panels show the resulting classification images. The
magnitude of the beta weights is indicated by different colors, with green being neutral and blue indicating negative weights,
whereas red indicates positive weights. Significant deviations from zero are indicated by a red circle around the joint. Correlations are
indicated by colored lines, connecting joints. Significantly positive correlations are colored red, and significantly negative correlations
are colored blue. Only the upright condition showed significant correlations to indicate the involvement of relational processing. It
also showed indications of a more holistic template-matching processing, as the whole upper body was significant. The inverted

condition yielded critical joint features only in the legs.

intraindividual consistency was 0.56 = 0.019, which,
though somewhat low, was significantly better than
chance level, #9) = 3.3, p =0.009, Cohen’s d = 1.48.
This result suggests that individuals maintained a
certain level of consistency in discriminating highly
ambiguous actions, when confronted with the same
stimuli at different times.

ClIs for inverted actors in a side view

The same analyses as explained above were per-
formed for the inverted condition. Compared with the
upright condition, the resulting Cls (Figure 3B)
revealed rather fewer joints with significant contribu-

tions to action discrimination. Only the feet and knees
reached significance: feet, #(9) = 3.0, p =0.015, Cohen’s
d =0.95; knee joints, #(9) = 2.3, p =0.04, Cohen’s d =
0.7. This pattern of results echoes previous findings
indicating that the feet are very important joints in a
walking direction discrimination task, even in inverted
conditions (Chang & Troje, 2009; Thurman & Lu,
2013b). However, the lack of significant contributions
from other joints indicates the weak involvement of
holistic processing when viewing inverted actions.
Furthermore, the resulting CI did not reveal any
relational features based on significant correlations
between joints, confirming the reduction of structural
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processing when actions are inverted. Intraindividual
consistency was 0.63 £ 0.022, showing a significant
difference from random responses, #(9) = 6.0, p =
0.0002, Cohen’s d = 2.68.

Experiment 2 used the same stimulus generation and
procedures as in Experiment 1, except that the actions
continuously rotated in depth. With the inclusion of
three-dimensional (3D) depth rotation, the individual
dots’ trajectories projected to the two-dimensional
image plane are the result of a combined action-related
joint movement and the 3D rotation. This complexity
will disrupt the utility of simple opponent motion
analysis strategies (Casile & Giese, 2005) or strategies
based on some characteristic features of feet movement
trajectories (Saunders et al., 2009). This decreased
discriminability in the trajectories of local dot move-
ments may encourage participants to exploit relational
features when making discriminations between walkers
and runners.

Methods

Twenty-two UCLA undergraduate students partici-
pated in Experiment 2 for course credit. These students
had not participated in Experiment 1. They were
randomly assigned to one of two experimental condi-
tions (upright, inverted). Two participants in the
inverted condition showed an extreme bias toward
either walker or runner response (i.e., more than 90%
of the trials were classified as walker or runner). The
results of these two participants were not further
analyzed, resulting in 10 participants per condition
(average age of 20.0 = 1.5, eight men).

In this experiment, stimuli were generated and
presented in the same manner as in Experiment 1,
except that the presented actions rotated in depth. On
each trial, the action was rotated in depth at a speed of
1°/frame (75°/s). Because we used an orthogonal
projection, the rotation direction could be perceived as
either clockwise or counterclockwise. The procedure
and analysis were the same as used in Experiment 1.

Results
Cis for upright actors in rotating view

Consistent with the findings from the upright
condition in the side view, the resulting Cls revealed
that the feet contributed significantly to the discrimi-
nation judgment even when the actions were presented
in rotating views, #(9) =4.36, p =0.0018, Cohen’s d =
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1.38, as shown in Figure 4A. However, the beta weight
for the feet was smaller in the rotating view than in the
side view in Experiment 1, #(18)=-2.74, p =0.014,
Cohen’s d =—1.22. Again, the wrists were the second
most important joints, #(9) =2.66, p =0.026, Cohen’s d
=0.84. The beta weight for the wrist was also smaller in
the rotating condition than in the side view, #(18) =
—3.85, p=0.0012, Cohen’s d=—1.72. Even though the
contributions from the feet and wrist joints are smaller
in the rotation condition, revealing the consistent
importance of these joints in both experiments shows
the generalization of critical joint features to more
complex viewing conditions.

As shown in Figure 4A, other joints failed to make
significant contributions to judgments of action dis-
crimination, suggesting a much weaker involvement of
holistic features in structural processing when actions
were under 3D rotation. The inclusion of the depth
rotation in this experiment likely weakened form-based
mechanisms based on template matching over frames
(Lange & Lappe, 2006). Hence, the failure to find any
structural features for rotating actions in 3D may be
due to the reduced activity of snapshot (Vangeneugden,
Pollick, & Vogels, 2009) and viewpoint-dependent
action detectors (Perrett et al., 1985; Vangeneugden et
al., 2011).

For relational features, the resulting Cls revealed a
negative correlation between the elbow and the hips on
the same side of the body, #9) =—6.1, p = 0.00018,
Cohen’s d=—1.92. We interpret the negative correlation
as an indicator that subjects selectively pay attention to
either elbow joint or the hip joint at a given time. With
the depth rotation, it is likely that participants used hip
movements to infer a 3D body facing direction, so that a
3D body layout can subsequently be established as the
reference, and then compare the elbow movements to
the body layout reference to determine whether the actor
is running (sharp angle between elbow, wrist, and
shoulder joints) or walking (obtuse angle between these
joints). Note that the movements of elbows themselves
were not critical joint features, as indicated by the lack
of significant beta weights. However, the relative
relations of elbows to hip joints did play an important
role in determining participants’ responses. Intraindi-
vidual consistency was significantly above chance level,
0.65 £ 0.046, 1(9) = 3.46, p =0.007, Cohen’s d=1.5. To
our knowledge, this is the first evidence supporting the
important role of a relational feature based on the
movements of elbows and hips in recognizing actions in
3D with rotating view.

Cls for inverted actors in rotating view

The resulting Cls (Figure 4B) revealed two critical
joint features in discriminating inverted actors with
rotating view: the feet, #(9)=2.78, p=0.021, Cohen’s d
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=0.88, and the knees, #(9)=2.72, p=0.024, Cohen’s d=
0.86. These features are consistent with the results from
the inverted condition with the side view in Experiment
1, suggesting the robustness of these critical features
when observing inverted actions across different
viewing conditions. The analysis did not yield any
significant correlations between joints, confirming the
reduced structural processing for inverted actions.
Intraindividual consistency was only slightly higher
than chance: 0.55 = 0.02, #(9) = 2.65, p = 0.026,
Cohen’s d=1.19.

Additional analysis
Principal component analysis

We also performed principal component analyses
(PCAs) on the data. For each individual subject, we
calculated the average morph weights from all trials
reported as a walker and the average morph weights
from the trials reported as a runner. These average
weights were put into one vector with the length of 13
(i.e., the number of joints) for each action type
individually. From 10 participants, this operation
resulted, per condition, in 10 walker vectors (i.e., 1
vector per subject) and 10 runner vectors. These vectors
were then concatenated into one matrix in the size of 20
x 7 (10 walker averages + 10 runner averages times 7
joint pairs [head, shoulders, etc.]) to provide the input
for the PCA.

As a baseline comparison, we calculated the expected
contribution of each component based on chance,
according to the broken stick model (Frontier, 1976).
The broken stick model randomly divides a line of unit
length (representing total variance) repeatedly into a
number of segments equal to the number of PCA
components and sorts these in descending order. The
average lengths of the ordered segments over repeated
permutations represent the eigenvalues expected by
chance. It is only informative to interpret those PCA
components that have a larger contribution than the
broken stick model (i.e., a larger contribution than
expected by chance).

For Experiment 1 in a side view, the PCA overall
confirmed the main results revealed with the CIs (see
Figure 5). In both the upright and the inverted side-
view condition, only the first of the principle
components (blue bars) explained more of the
variability among participants than expected by
chance (red line). Furthermore, the contributions of
each joint can be quantified as the absolute value of
loading scores to the component given by the PCA.
For the upright actors in the side view, the PCA
revealed that the first principle component loaded
most heavily on the feet. Meanwhile, the loadings
from joints of the upper body also contributed
considerably, consistent with the analysis on the Cls in
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above sections. For the inverted actors, the first
principle component loaded primarily on the feet and
the head, with a gradual transition over the entire
length of the body. A similar, but less apparent, trend
was observed in the CI analysis.

For Experiment 2 with the rotating view, the PCA
(Figure 5) showed that, only in the upright condition,
the first principle component accounted for more
variability than expected by chance, and it loaded
primarily on the feet. On the contrary, in the inverted
condition, none of the principle components explained
the variability better than expected by chance.

Bias and consistency values: Internal noise estimates

We analyzed the consistency values through a
double-pass procedure (Burgess & Colborne, 1988; Z.
L. Lu & Dosher, 2008; Neri, 2009a). Identical trials,
with exactly the same added noise, were presented to
the subject twice, and we recorded whether the answer
was identical in the two passes. From the double-pass
design, we can measure consistency as the proportion
of identical trials in which the participant gave an
identical answer and bias as the proportion of trials
that were given one of both responses (e.g., the overall
proportion of trials that was reported as a walker). We
took the largest of the two biases as our bias measure:
bias = max(P(report_walker), P(report_runner)).

We found that several observers had strong biases
toward either runner or walker. Such strong biases
inflate consistency values. For example, a participant
providing the same response for all trials would achieve
100% consistency between the two double-pass blocks.
Hence, there is a clear monotonic relationship between
the bias and the consistency values. This theoretical
relationship between bias and consistency is captured in
Figure 6. A gray area in Figure 6 depicts the
theoretically impossible range of consistencies given a
certain bias. A gray curve in Figure 6A and B is used to
show an average consistency when a participant
responds with a certain bias and is otherwise influenced
only by internal fluctuations in the system. In this case,
the response is based on internal noise and not on the
signal. In other words, the consistency is based solely
on the bias and not on the use of information present in
the stimulus.

Nevertheless, notwithstanding the greater consisten-
cy with the increase of bias, most observations still lie
above the curve derived from random responses
(trending with a nonparametric binomial test over all
data; p = 0.08) suggesting that participants responded
in a consistent way despite the ambiguity in the
morphed actions.

When performing double-pass experiments, studies
in the literature generally plot consistency (often called
agreement) as a function of accuracy to examine how
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Figure 4. Classification data from the binomial logistic regression for Experiment 2. Biological motion actions were rotating in depth.
The upper panels show the trajectories of a single trial. The bottom panels show the results. As in Figure 2, the magnitude of the beta
weights is indicated by different colors, with green being neutral and blue indicating negative weights, whereas red indicates positive
weights. Significant deviations from zero are indicated by a red circle around the joint. Correlations are indicated by colored lines,
connecting joints. Significantly positive correlations are colored red, and significantly negative correlations are colored blue. Only the

upright condition showed significant correlations.

consistency and accuracy relate to each other and to
estimate external and internal noise values (as well as
other assumptions; Burgess & Colborne, 1988; Z. L. Lu
& Dosher, 2008; Neri, 2009a). However, in our study,
we presented ambiguous actions between walker and
runner with a 50-50 morphing value; the accuracy
measure was not manipulated. However, we can plot
the relationship between bias and consistency (as
shown in Figure 6). We derived the relationship
between bias and consistency for various ratios of
external and internal noise through computer simula-
tions. The simulations assume an internal noise that is
normally distributed, with a mean of x and a standard
deviation of 1. To obtain a range of biases, x is varied.
A value for this internal noise is randomly sampled on

each trial. The external noise is also normally
distributed, with a mean of 0 and a standard deviation
as a certain fraction of the deviation used for the
internal noise. This external noise is the same on both
passes in the double-pass simulations. The total signal
in a trial is the addition of the internal and external
noise. Consistent trials are those double-pass trials that
are both larger than zero or both smaller than zero.
Bias is calculated as defined above. When the results in
Experiments 1 and 2 are replotted in Figure 6C and are
compared with the curves relating bias to consistency at
various external/internal noise ratios, we find that our
data cluster close to a ratio of external/internal noise
equal to 0.5. This value is comparable to, but lower
than, earlier estimates for other tasks and stimuli (Neri,
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2010), which were closer to 1, with the average value
around 0.8. Using 1/(1 4+ x?) (Neri, 2010), with x being
the ratio of internal/external noise (2 in our case), our
noise estimate translates into an efficiency of about 0.2,
meaning that subjects use about 20% of the statistical
information available in the stimulus (Barlow, 1978;
Neri, 2010).

Human are exceedingly sensitive to structured
motion signals, both animate and inanimate (Hiris,
2007). Using a hypothesis-free reverse correlation
technique, we aimed to unfold the critical features
used in action discrimination. We show that humans
have an efficiency of 20% in extracting information
from our biological motion stimuli. This information,
we show, is carried by three types of features, which
play important roles in discriminating bipedal loco-
motion presented in a side view: (a) critical joint
features supported by the finding that the similarity of
the movements of feet and wrists to prototypical
movements of these joints were most reliably used
across all participants; (b) structural features reflected
by small but significant contributions from move-
ments of almost all other joints, which potentially
underlie a form-based analysis; and (c) relational
features, revealed as statistical correlations between
joint contributions, including relations between the
two feet, and between the wrists/elbow and the hips.
When the actions were inverted, only critical joint
features showed a significant influence in the discrim-
ination judgment; structural and relational features
were not revealed to show any contributions. When
the actions were presented with continuous depth
rotation, critical joint features and relational features
exhibited strong associations with the responses, but
there was an absence of structural features. Overall,
our novel design shows that a rich set of critical
features is used for the perception of biological
motion, and the visual system flexibly selects a subset
of features depending on viewing conditions to
facilitate action discrimination. Below we will discuss
the importance of these findings and clarify the
connections with the literature.

Efficiency

We found that humans have an efficiency of about
20%, which would mean that they use 20% of the
statistical information available in the stimulus in our
action discrimination task. This value is on the lower
end of reported efficiencies for many low-level tasks

van Boxtel & Lu 12

(Neri, 2010). These earlier estimates of internal noise
were based on stimuli that were presumably pro-
cessed in earlier stages of the visual system (lumi-
nance, contrasts) than our stimuli (biological
motion). The higher-level processing may be one
possible source for the high internal noise and low
efficiency in action discrimination. The finding of
lower efficiencies of about 8% in a 3D shape
recognition task (Tjan, Braje, Legge, & Kersten,
1995) supports this interpretation.

The efficiency value of ~20% in our study of action
discrimination is close to the efficiency found in gender
and affect recognition (~30%) from biological motion
(Pollick, Lestou, Ryu, & Cho, 2002). Human efficiency
in action discrimination, however, is much higher than
the efficiency in identifying the walking direction when
biological motion stimuli are embedded in luminance
noise (<1%; Gold, Tadin, Cook, & Blake, 2008). This
difference suggests that the human visual system is
more efficient in processing the information about
movement trajectories of joints in biological motion
than processing the luminance information by match-
ing to posture templates.

Critical joint features for action discrimination
Feet

Previous studies have found that the feet are
important for judging the walking directions of a
point-light actor (Mather et al., 1992; Thurman et al.,
2010; Thurman & Grossman, 2008; Troje & WesthofT,
2006). The reason for the importance of the feet is
probably twofold. First, the feet, when most extended,
play an essential role in providing a recognizable
skeleton shape for the body from a side view, which
can be used for detecting the facing direction using the
key-frame template (Thurman & Grossman, 2008).
Second, for actions with bipedal locomotion (e.g.,
walking, running), the movements from the two feet
generate an opponent motion signal when they cross
midcycle. Such opponent motion can be readily
extracted by motion-sensitive neurons in the middle
temporal area (Heeger, Boynton, Demb, Seidemann,
& Newsome, 1999) to promptly signal potential
human movements and elicit the impression of
biological motion (Casile & Giese, 2005; Thurman &
Grossman, 2008).

In the present study—involving the discrimination of
different actions, and not walking directions—we
found that the feet were indeed most consistently used
by the observers, especially in the upright conditions,
and to a lesser extent in the inverted condition. The fact
that the hypothesis-free approach reveals the same
critical features as previous research confirms the value
of this method.
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Interestingly, we also find a decrease in the use of the
feet (and the wrists) when the action is rotated in depth
as compared to when the action is shown from a side
view. We explain this by noting that trajectories of
individual joints and opponent motion signals are
much less informative in this condition, because the
rotation of the actor itself causes extrinsic motion
signals not due to the actor’s movements and spurious
opponent motion signals that are not informative
about the action portrayed.

Wrist, elbow, and knees

Importantly, the hypothesis-free approach enabled
us to determine the contribution of the other joints in
the action discrimination task. In addition to the feet,
the wrists appeared as the second most important joints
in the two upright conditions. This finding is consistent
with previous findings that the movements of wrists
have also been identified as critical features in judging
walking direction of an actor, (Mather et al., 1992;
Thurman et al., 2010) and animacy ratings (Thurman &
Lu, 2013b) but less so in detection tasks (Pinto &
Shiffrar, 1999). Hence, the contribution of the wrists
varies depending on the nature of different tasks.

In our action discrimination task, the wrists may
have contributed in at least two different ways to the
performance. First, they are, after the feet, the joints
that produce the largest excursion and the largest
opponent motion signals, which provide strong cues for
form-based and motion-based analyses. Second, the
position of the wrist determines in large part the arm
angle subtended by the shoulder, elbow, and wrist (this
is so because the elbow and shoulder do not differ as
much as the wrist between walker and runner). The arm
angle itself can be a very informative cue for the
discrimination tasks, with sharp angles indicating
running and obtuse angles (stretched arms) indicating
walking.

Consistent with previous literature (Mather et al.,
1992; Thurman et al., 2010; Thurman & Lu, 2013b),
we found that the knees did not contribute to the
discrimination task in upright conditions. The low
importance may be somewhat surprising, because the
knees (as well as the elbows, which contribute little as
well) exhibit significant excursions in 3D space and
could potentially be used by the observer as a
discriminative feature. One reason why these joints
may be unused in the current task is that there is
enough information in the wrists and feet, obviating
the need for the observer to use the information from
the knees and the elbows, even though they do contain
discriminative information. However, it seems un-
likely that the knees contain much information in
ecologically valid upright body orientations, because
it was previously reported (Mather et al., 1992) that

van Boxtel & Lu 13

when the wrist and feet are removed from the display,
the subjects’ performance on a direction discrimina-
tion task dropped to chance levels. This finding
indicates that observers really do not use the
information from the knees and elbows, even when the
wrists and feet are removed. However, it should be
noted that the task in the study by Mather et al. (1992)
was different from our task (i.e., a walking direction
discrimination task and not an action discrimination
task).

Structural processing

A striking observation in our results is that, for the
upright actions in the side view, almost the entire set of
joints plays a significant role in affecting action
discrimination judgments, including all the joints of the
upper body. Clearly, in the side view, human observers
use a wide array of cues originating from the entire
stimulus, and not just from the feet, suggesting a more
holistic processing involved in action discrimination.
This finding accords well with a previous analysis of
emotional gait patterns that indicated that most if not
all joints contain, in principle, discriminative informa-
tion about inferring emotion from observed actions
(Roether, Omlor, Christensen, & Giese, 2009). In
another study (Mark Williams et al., 2009) it was
shown that inferring arm movement in tennis also
depended on nonarm joints.

The PCA provides perhaps the most direct way of
establishing the contribution of structural processes.
Overall, the PCA provided data very consistent with
those from the CI analysis. The PCA revealed that the
upright side view condition showed significant struc-
tural processing, whereas the other conditions provided
much less support for the influence of joints beyond the
feet in the classification process.

The fact that observers use such a wide range of
joints in our experiments, but only in the side view
condition, could be an indication of the use of a
template-matching procedure in a familiar and com-
mon viewpoint from the sagittal viewing angles (Lange
& Lappe, 2006).

Relational features

Previous research has repeatedly shown that bio-
logical motion perception depends not only local
processing but also partly on holistic processing, taking
into account the spatiotemporal relationships between
joints (e.g., Thornton et al., 1998). Spatially scrambling
or inverting an action animation decreases recognition
and detection performance (Bertenthal & Pinto, 1994;
Dittrich, 1993; Pavlova & Sokolov, 2000; Proffitt &
Bertenthal, 1990; Sumi, 1984). In other research, it was
shown that correct limb configurations are important
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for biological motion perception (Neri, 2009b; Pinto &
Shiffrar, 1999). Furthermore, the learning of unfamiliar
motion patterns is better when the joints make
articulated movements constrained by an (invisible)
skeleton (Jastorff, Kourtzi, & Giese, 2006). These
findings suggested the importance of certain relation-
ships between joints in achieving our high sensitivity to
biological motion signals. It has, however, so far, been
difficult to describe precisely which relationships
between joints are most important. Apart from some
research indicating that the position of the feet relative
to the rest of the body is important (Hirai et al., 2011;
Thurman & Lu, 2013b), we know very little about the
importance of these cues.

The logistic regression analysis that we have
employed in deriving the Cls has the advantage of
estimating how multiple joints jointly contribute to
determine the judgment of action discrimination. This
method therefore identifies relational features that are
used by observers and serve as an approximation of
relational processing in action perception. This type of
analysis goes beyond simple first-order Cls and takes
into account higher-order statistics. Our study is the
first to look at the correlation between predictors in
reconstructing Cls for biological motion (i.e., joints in
our experiment), although some previous work has
examined covariance (Neri, 2009a), which is related to
our correlation analysis, and other types of high-order
statistics (Neri, 2004; Neri & Heeger, 2002; Neri,
Parker, & Blakemore, 1999) in the context of brightness
and orientation perception.

Interestingly, only discrimination of upright actions
yielded significant interjoint relation features in the
resulting Cls. There were two main types of relational
features. The first was the relation associating the
contributions of the arms with the hips. We hypoth-
esize that the visual system uses the hip movements to
infer the body layout in a 3D world, so that the
relative movements of the arms can be calculated in
the body-centered coordinates. In addition, the brain
identifies actions relying on certain discriminative
properties of the relational feature (e.g., wrists below
the hips indicate walking, wrists above the hips
indicate running). The second type of relational
feature (present only in the side view) was the
relationship between the two feet. Indeed, the move-
ments of the two feet relative to each other have been
reported to be important in identifying the walking
direction of an actor (e.g., Casile & Giese, 2005;
Thurman & Grossman, 2008), as they produce
opponent motion signals. Although it is still specula-
tive to provide functional accounts for relational
features, the existence of these features suggests that,
indeed, the brain employs relational processing, and a
more holistic approach in general, when viewing
action in the natural viewing orientation.
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Overall, with our technique, we identified critical
joint features, foremostly the feet and the wrists, in an
action discrimination task of bipedal locomotion. We
furthermore showed that many other joints have a
significant influence on classification decisions in the
side view, suggestive of a form-based template-match-
ing process. Moreover, we found that the visual system
employs several relational features, such as the
combined information from the two feet, but only in
ecologically valid upright body orientations.

Our observations are made with stimuli that are
presented for 1 s. This is a duration at which the
biological motion analysis seems to rely on motion
information predominantly and not on form informa-
tion (Thurman et al., 2010). It would be of interest to
see if shorter trial durations would result in a greater
dependence on form information and potentially
template-matching mechanisms (Lange & Lappe,
2006). Such shorter trials could potentially manifest a
greater reliance on structural features as measured in
the side view conditions in our experiments.

Our data were obtained in 1,000 trials, which are
greatly fewer trials than in many other CI paradigms in
the literature of biological motion research. Obtaining
similar results with a hypothesis-driven approach
would take a large effort and requires the involvement
of many different stimulus manipulations. In addition,
the traditional hypothesis-driven approach may also
not provide the level of detail that we show in the
present study (i.e., comparative contributions of all
joints and their relations). Therefore, this new ap-
proach is a useful addition to the psychophysical tools
available to the researcher interested in biological
motion perception.

Our discussion has focused mainly on biological
motion tasks that involve walking and running actions,
because most research is done on these two actions.
However, observers are generally very good at identi-
fying many types human action. Observers can easily
recover information about, for example, identity
(Cutting & Kozlowski, 1977), emotion (Dittrich et al.,
1996; Pollick et al., 2001), and type of actions other
than walking (Brown et al., 2005; Dittrich, 1993; Ma et
al., 2006; Norman et al., 2004; van Boxtel & Lu, 2011).
One further advantage of the hypothesis-free approach
that we have employed in the current design is that it is
equally well applicable to other types of classification
stimulus (e.g., boxing in which the wrists are likely
more important; van Boxtel & Lu, 2012) and other
tasks (e.g., emotion discrimination).

Keywords: classification images, action perception,
action classification, biological motion, double-pass
paradigm
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