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Abstract 

Recent work has begun to investigate how structured relations 
can be learned from non-relational and distributed input 
representations. A difficult challenge is to capture the human 
ability to evaluate relations between items drawn from distinct 
categories (e.g., deciding whether a truck is larger than a 
horse), given that different features may be relevant to 
assessing the relation for different categories. We describe an 
extension of Bayesian Analogy with Relational 
Transformations (BART; Lu, Chen & Holyoak, 2012) that 
can learn cross-category comparative relations from 
autonomously-generated and distributed input representations. 
BART first learns separate representations of a relation for 
different categories and creates second-order features based 
on these category-specific representations. BART then learns 
weights on these second-order features, resulting in a 
category-general representation of the relation. This 
hierarchical learning model successfully generalizes the 
relation to novel pairs of items (including items from different 
categories), outperforming a flat version of the learning 
model. 

Keywords: relation learning; generalization; distributed 
representations; Bayesian models 

Introduction 

Learning Relations from Non-relational Inputs 

A hallmark of human intelligence is the ability to learn and 

make inferences based on relations between entities, rather 

than solely on features of individual entities (for a review 

see Holyoak, 2012). A challenge for cognitive science is to 

explain how relations can be acquired. Some approaches to 

relation learning postulate some sort of grammar that 

generates possible relations, tacitly assuming that the origin 

of relational concepts is top-down (e.g., Tenenbaum, Kemp, 

Griffiths & Goodman, 2011). Doubtless some relations are 

constructed in a top-down fashion, but there is strong 

evidence that at least some relations are formed by bottom-

up processes (Mandler, 1992). For example, children seem 

to acquire comparative relations such as larger than in 

stages, first learning features of individual objects, then 

extracting specific attributes of individual objects (e.g., a 

size value), and eventually linking attributes of paired 

objects to form a binary relation (Smith, 1989). Thus a basic 

problem for cognitive science is: How can relations be 

acquired from non-relational inputs? 

A few models based on neural-network architectures 

(Doumas, Hummel & Sandhofer, 2008; Smith, Gasser & 

Sandhofer, 1997) have had some success in modeling 

bottom-up relation learning. However, it is difficult to fully 

evaluate the adequacy of proposed models of relation 

learning without first controlling the nature of the 

elementary inputs on which learning is based. A well-known 

limitation of models of analogy (for which relational 

knowledge is central) is that modelers typically create their 

own “toy” input representations, which may be tailored 

(perhaps inadvertently) so as to reduce task difficulty 

(Chalmers, French & Hofstadter, 1992). In modeling basic 

relation learning, it is critical to ensure that the non-

relational inputs on which learning operates are 

autonomously created (rather than hand-coded by the 

modeler), and are of realistic complexity. When a model of 

relation learning is forced to operate on realistic inputs, 

theoretical issues that might have gone unnoticed with 

simpler inputs are brought to the fore. 

Here we address one key issue that arises in learning 

relations from non-relational and realistically complex 

inputs: How can a learned relation be generalized to novel 

items, which have representations dissimilar to the items 

used to train the system? We first describe the basic model 

that served as our starting point, and then demonstrate how 

it could be extended to overcome apparent limits on its 

capacity to generalize. 

Bayesian Model of Relation Learning  

Recently, discriminative Bayesian models have been used to 

learn relations in a bottom-up fashion. A key idea is that an 

n-ary relation can be represented as a function that takes an 

ordered set of n objects as its input and outputs the 

probability that these objects instantiate the relation. The 

model learns a representation of the relation from labeled 

examples, and then applies the learned representation to 

determine whether the relation holds for novel examples. A 

second key idea is that relation learning can be facilitated by 

incorporating empirical priors, which are derived using 

some simpler learning task that can serve as a precursor to 

the relation learning task (Silva, Heller & Ghahramani, 

2007). 

These ideas were incorporated into Bayesian Analogy 

with Relational Transformations (BART), a discriminative 



model that can learn comparative relations from non-

relational inputs (Lu, Chen & Holyoak, 2012). Given 

independently-generated feature vectors representing pairs 

of animals that exemplify a relation, the model acquires 

representations of first-order comparative relations (e.g., 

larger, faster) as weight distributions over the features. The 

richest and most complex feature representations we have 

used are derived by applying the topic model (Griffiths, 

Steyvers, & Tenenbaum, 2007) to the English Wikipedia 

corpus. The output of the topic model is used to create a 

real-valued feature vector for each word. The simulations 

presented here are based on topic vectors. 

BART represents a relation using a joint distribution of 

weights, w, over object features. A relation is learned by 

estimating the probability distribution ,( ,| )P
S S

Rw X  where 

S
X  represents the feature vectors for object pairs in the 

training set, the subscript S indicates the set of training 

examples, and S
R

 
is a set of binary indicators, each of 

which (denoted by R) indicates whether a particular object 

(or pair of objects) instantiates the relation or not. The 

multivariate distribution of weights, w, constitutes the 

learned relational representation, which can be interpreted 

as quantifying the influence of the corresponding feature 

dimensions in X on judging whether the relation applies. 

The weight distribution can be updated based on examples 

of ordered pairs that instantiate the relation. Formally, the 

posterior distribution of weights can be computed by 

applying Bayes’ rule using the likelihood of the training 

data and the prior distribution of w (which we assume to be 

independent of the object-pair features in the training set, 

)
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The likelihood is defined as a logistic function for 

computing the probability that a pair of objects instantiates 

the relation, given the weights and feature vector: 
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The prior, P(w), is a Gaussian distribution and is 

constructed using a bottom-up approach in which initial 

learning of simple concepts provides empirical priors that 

guide subsequent learning of more complex concepts. 

Specifically, BART extracts empirical priors from weight 

distributions for one-place predicates such as large to guide 

the acquisition of two-place relations such as larger. Lu et 

al. (2012) trained BART on the eight one-place predicates 

(e.g., large, small, fierce, meek) that can be formed using 

the extreme animals at each end of the four relevant 

continua (size, speed, ferocity, and intelligence). When 

learning a two-place relation, BART automatically chooses 

the most relevant one-place predicate based on the training 

pairs for the relation, from which the empirical prior weight 

distribution is derived. For additional details on the 

operation of the model, see Lu et al. (2012). 

BART’s learned relations support generalization to new 

animal pairs. After receiving 100 training pairs represented 

using topic feature vectors, the model discriminates between 

novel pairs that instantiate a relation and those that do not 

with about 70-80% accuracy. The model yields the classic 

symbolic distance effect (Moyer & Bayer, 1976), as 

discrimination accuracy increases monotonically with the 

magnitude difference between items in a pair. Moreover, 

BART’s learned weight distributions can be systematically 

transformed to solve analogies based on higher-order 

relations between the learned first-order relations (e.g., 

opposite). A simpler version of the model can predict 

magnitude values (based on human ratings) for individual 

objects (Chen et al., 2014), and an extension can use its 

learned relational representations to generate novel items 

instantiating the relation (Chen, Lu & Holyoak, 2013). 

Relations Linking Distinct Categories  

BART has thus demonstrated the promise of using a 

bottom-up approach to bootstrap relation learning. 

However, after being trained on animal pairs, the initial 

model failed on tests requiring generalization to inanimate 

objects (e.g., deciding if a toaster is larger than a shoe), 

performing only slightly above chance (about 57% 

accuracy). 

 This failure illustrates the importance of using realistic, 

independently-generated inputs. It would have been easy to 

hand-code a local feature representing a discriminative 

dimension (e.g., a size value) into the representations of all 

physical entities, in which case the model would readily 

generalize a relation learned from pairs within a specific 

domain (e.g., animal pairs) to all pairs of entities. But topic 

inputs do not provide such discriminative features. As a 

consequence, each relation acquired by BART is 

represented by a highly distributed pattern of weights across 

many feature dimensions. The pattern acquired using one 

subset of entities (animals) may not match the pattern 

needed to make relational discriminations for a different 

subset (inanimate objects). It is easy to imagine features that 

would impact a relational discrimination very differently for 

different classes of entities. For example, the feature “is 

from Africa” might predict that an animal is relatively large, 

but that a building is relatively small. Similarly, a topic 

feature of “found in nature” might be associated with certain 

large objects (e.g., mountain, ocean), but have weak 

predictive power for the sizes of most animals. 

 Semantic hierarchies are built out of disjunctions of 

different categories (Hampton, 1988), and more general 

categories are typically more difficult to learn than specific 

ones (e.g., Horton & Markman, 1980). Ecologically, it 

seems very likely that comparative relations most 

commonly are learned using pairs of entities drawn from a 

relatively specific category (e.g., a dog is larger than a cat; a 

bowl is larger than a glass). Nonetheless, adults are quite 

accurate in judging relative sizes of dissimilar entities they 

may never have previously considered together (e.g., a 

toaster is larger than a sparrow; Holyoak, Dumais & Moyer, 



1979). Thus, comparative relations can be evaluated not 

only for items drawn from a single specific category, but 

also for items drawn from different categories. Here we 

describe a hierarchical extension of the BART model that 

addresses generalization across different categories, and 

report tests comparing its performance with a “flat” (non-

hierarchical) version of the same model. 

Hierarchical Model of Relation Learning 

Overview 

The computational goal is to learn comparative relations, 

such as larger, that span multiple categories (animals and 

inanimate objects), from mostly within-category examples 

(animal-animal pairs and object-object pairs) and a small 

number of cross-category examples (animal-object and 

object-animal pairs). We have developed a two-layer model 

for this task, illustrated in Figure 1. The bottom layer 

contains the raw input features, which we term first-order 

features. Based on within-category examples described by 

first-order features, the model first learns a separate, 

specialized representation of the relation for each category. 

From these initial category-specific relational 

representations, the model derives a small number of more 

abstract features (second-order features), which comprise 

the model’s second layer of features. These second-order 

features have similar interpretations across different 

categories, abstracting away differences among the 

categories in how their first-order features influence 

relational judgment. The model then learns a second layer of 

weights that operate on second-order features to predict 

whether a pair of entities (possibly from different 

categories) instantiates the comparative relation. These 

second-order weights can be learned from cross-category as 

well as within-category examples. We use a small number 

of cross-category examples in most of our simulations, but 

we also experiment with using only within-category 

examples. 

Domain and Inputs 

Although in principle our model could learn any 

comparative relation that encompasses multiple categories, 

here we focus on the larger and smaller relations between 

animals and inanimate objects. To establish the “ground 

truth” of whether various pairs of entities instantiate these 

relations, we used a set of human ratings of size for a mixed 

set of animals and objects (Holyoak et al., 1979). After 

ambiguous words (e.g., “match”) were removed, there were 

32 animals and 111 inanimate objects for which topic 

representations were available. 

To obtain topic feature vectors, we ran the topic model on 

Wikipedia corpus to obtain 300 topics. Note that deriving a 

higher number of topics would take a very long time on 

such a large corpus. The algorithm was used to generate a 

Markov chain. The first sample was taken after 1,000 

iterations, and sampling was repeated once every 100 

iterations until eight samples were produced. Each sample 

yielded a matrix in which the (i, j)th entry is the number of 

times that word i has been assigned to topic j. From this 

matrix, we derived a vector for each word based on the 

conditional probability of each topic given that word. We 

averaged the word vectors created from different samples of 

the Markov chain because they contained very similar topics 

(determined by examining the most probable words for each 

topic). 

Finally, we reduced the dimensionality of the topic 

vectors by automatically choosing 50 effective features 

(those for which learning is enabled) for animals and objects 

separately. These were simply the features most associated 

with the items in each category (i.e., those with the highest 

values summed across the items). Thus, animals and objects 

are represented by different (but possibly overlapping) sets 

of effective features. As we will see, the hierarchical model 

allows entities from different categories to be represented by 

different sets of effective features. Figure 2 provides a 

visualization of the topic vectors (reduced to 10 features) for 

10 animals and 10 objects. Note that the topic vector for 

each word is not constrained to be a probability distribution 

over topics. 

 

Figure 1: Illustration of the hierarchical model of relation learning with an example in which an animal occupies the first role 

and an object occupies the second role (e.g., whale-ocean). The first-order relational weights for animals are highlighted in 

light blue and the weights for objects are highlighted in purple. Features and weights for the second relational role are 

indicated with dashed lines. Each second-order feature is distinguished by a different color.  

first-order features 

first-order weights 
for animals 

second-order 
weights 

Relation 
(e.g., larger) 

… 

animal 1 

… 

animal 2 

… 

object 1 

… 

object 2 

first-order weights 
for objects 

second-order features 



Table 1: The top 10 words associated with some example 

topics found by the topic model using the Wikipedia corpus. 

 

 

  

Figure 2: Illustration of topic vectors (reduced to 10 features 

to conserve space) for some example animals and objects, 

which are sorted by their sizes. The cell intensities represent 

feature values (dark indicates high values and light indicates 

low values). 

Operation of the Model 

Learning First-Order Weights In order to learn the initial 

category-specific relational representations, the original 

BART model is trained separately on 40 animal-animal 

pairs and 40 object-object pairs that instantiate larger (or 

smaller; we will use the larger relation to illustrate the 

operation of the model in the rest of this paper). This phase 

of learning yields two weight distributions: one that 

represents the larger relation for animals and one for 

objects. 

Deriving Second-Order Features For each category, the 

model uses k-means clustering to separate the input features 

into three clusters, based on the pattern of learned first-order 

weights across the two relational roles (i.e., larger-object 

and smaller-object). We chose k = 3 because we 

hypothesized that the weights for comparative relations 

would generally follow three distinct patterns: (1) positive 

for the first role and negative for the second role, associated 

with features that predict largeness for the particular 

category, animals or objects (the pro cluster); (2) negative 

for the first role and positive for the second role, associated 

with features that predict smallness (the con cluster); and (3) 

around zero for both roles (with a few weights that are 

positive or negative for both roles), corresponding to 

features that are uncorrelated with size (the neutral cluster). 

These patterns were indeed the three clusters that the k-

means algorithm typically found for the learned weights, as 

illustrated by the example in Figure 3. (The choice of k = 3 

is further justified by a plot of the sum of all within-cluster 

point-to-centroid distances as a function of k, in which an 

“elbow” occurs at k = 3.) 

 

  
 

Figure 3: Illustration of the first-order weights that BART 

learned for each category and the three clusters found by the 

k-means algorithm for one run of the model. Each row 

within each set of weights represents a single topic 

dimension. See Table 1 for interpretation of some of the 

topics in each cluster. Note that corresponding clusters for 

the two categories include different features. 

 

A single second-order feature is derived from each 

cluster. For a given pair of entities, each second-order 

feature is computed by taking the dot product between the 

first-order feature values in the corresponding cluster and 

the learned first-order weight means on those features. As 

illustrated in Figure 1, the weights for the appropriate item 

category and relational role are used. For example, given the 

pair whale-ocean, the role-1 weights for animals are used to 

calculate the second-order features for whale, and the role-2 

weights for inanimate objects are used for ocean. Since 

there are three clusters for each role, a total of six second-

order features are calculated for each pair of entities. 

Critically, the second-order features are indifferent to the 

identity and number of the first-order features included in 

each cluster. 

Animals

Role 1 Role 2

 

 

-1 0 1

Objects

Role 1 Role 2

 

 

-1 0 1

Topic Top 10 words 

1 fish marine fishing sea species water waters ocean shark whale 

2 food rice meat made milk foods served cuisine cooking eating 

3 wear worn wearing hair dress wore made fashion clothing black 

4 
disease virus infection cases infected HIV diseases spread human 
AIDS 

5 animals animal harry potter wild bear hunting lion horn sheep 

6 forest species plant tree plants trees wood forests native found 

7 
land agricultural farm farmers food farming agriculture crops rural 
production 

8 park hill creek mount parks area mountain trail located rock 

Animals Objects 

topic

1 2 4 5 7 11 12 1315 16
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cow
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pig

penguin

dog

duck

mouse
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ocean

mountain

pond

tree
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sock

egg

acorn

earring

pea

Pro cluster: 
Includes topics 

5 and 7 

Con cluster: 

Includes topic 4 

Neutral cluster: 
Includes topics 

1 and 2 

Pro cluster: 
Includes topics 

1 and 8 

Con cluster: 
Includes topics 

2 and 3 

Neutral 
cluster: 

Includes topic 6 



Learning Second-Order Weights We use the original 

BART model with an uninformative prior (zero means and 

identity covariance matrix) to learn the weights on the 

second-order features from a small number (10 or fewer) of 

cross-category pairs that instantiate larger. In our 

simulations, we experiment with using different numbers of 

such training pairs. 

Baseline Model 

We compare the hierarchical model to a “flat” model that 

does not include second-order features and weights. This is 

simply the original BART model, given 40 within-category 

examples of each type and 10 cross-category examples. For 

this model, entities from different categories must be 

represented by the same set of effective features. We use the 

union of the two sets of 50 features selected for animals and 

objects, resulting in a set of 79 features. 

Simulation Results  

We evaluated the models by running them on ten different 

sets of training pairs and novel test pairs. These pairs were 

randomly chosen from the set of all possible pairs that 

instantiate a specific relation. Each model calculates the 

probability of instantiating the relation for each test pair 

(e.g., penguin-flower) and its reverse (flower-penguin), so 

the test set contains an equal number of positive and 

negative examples of the relation. The model is considered 

to be correct on a test pair if the pair instantiates the relation 

and its predicted probability is greater than .5, or if the pair 

does not instantiate the relation and its predicted probability 

is less than .5. Results are averaged over the ten runs. Here 

we report the results of several tests of the generalization 

ability of each model. 

Testing on Pairs of Each Type 

In the first test, we trained each model on 40 animal-animal 

pairs, 40 object-object pairs, and 10 cross-category pairs. 

We then tested each model on 100 novel animal-animal, 

object-object, or cross-category pairs. Figure 4 shows the 

 
 

Figure 4: The models’ mean accuracy on a generalization 

test for larger across ten runs for different types of test 

pairs. Error bars indicate 1 standard deviation. 

mean accuracy on the larger relation across ten runs for the 

two models on each type of test pair (the results for smaller 

were similar). The hierarchical model outperformed the 

baseline model by about 19 percentage points across the 

three types of test pairs. In subsequent tests, we focus on 

cross-category test pairs, which are the most interesting type 

because the models must consider items from different 

categories together (the type that occurs least frequently in 

the training set). 

Number of Cross-Category Training Examples 

We varied the number of cross-category training examples 

while keeping constant the number of within-category 

examples of each type (40), and tested the models on 100 

novel cross-category pairs. Figure 5 shows the mean 

accuracy on larger across ten runs for the two models as a 

function of the number of cross-category training pairs 

(ranging from 0 to 10). (Once again, the results for smaller 

were similar.) The hierarchical model performed at chance 

level when no cross-category examples were provided, 

because its second-order weights had not been learned and 

were simply the prior (zero means and identity covariance 

matrix). The baseline model was insensitive to the number 

of cross-category training pairs, whereas accuracy for the 

hierarchical model increased with the number of cross-

category pairs, besting the baseline model after just four 

examples. 

 

 
 

Figure 5: Learning curves for the two models: mean 

accuracy of models on a generalization test for larger across 

10 runs as a function of number of cross-category training 

pairs. Error bars indicate 1 standard deviation. 

Type of Examples for Second-Order Weights 

The hierarchical model’s second-order weights apply 

equally to pairs drawn from the same or different categories 

because they operate on the same set of second-order 

features for each category. Thus, the hierarchical model 

improves performance on all pair types (see Figure 4). It 

follows that the model should perform well on cross-

category test pairs even when its second-order weights are 

learned from within-category examples only. We again 

trained the first-order weights using 40 animal-animal and 

40 object-object pairs. We then trained the model’s second-
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order weights on 10 additional pairs: either 10 animal-

animal pairs, 10 object-object pairs, 5 within-category pairs 

of each type, or 10 cross-category pairs. Finally, we tested 

the model on 100 novel cross-category pairs. The model 

achieved accuracies of 91%, 92%, and 91% on larger when 

trained respectively on 10 animal-animal pairs, 10 object-

object pairs, and 5 within-category pairs of each type. In 

comparison, accuracy was 93% when the model’s second-

order weights were learned from 10 cross-category 

examples. Thus, the hierarchical model can learn to make 

relational judgments for cross-category pairs without ever 

encountering a single example of such pairs.  

General Discussion 

We have demonstrated that a hierarchical extension of the 

BART model can learn and generalize comparative relations 

across dissimilar categories, using non-relational topic 

vectors as inputs. The key to the model’s performance is its 

creation of higher-order features based on patterns of 

category-specific first-order weights applied to primitive 

features representing individual entities. 

 Insight into the superior performance of the hierarchical 

model can be provided by examining the topic dimensions 

from which the model created each second-order feature. 

One topic that appears in the feature representations of both 

animals and objects involves fish and the sea (topic 1; see 

Table 1). For objects, this topic was a part of the pro feature 

for larger (objects related to the sea tend to be large, such as 

ocean, pond, and boat), whereas for animals it was a part of 

the neutral feature (marine animals span the full range of 

sizes). Another feature shared by animals and objects is a 

topic related to food (topic 2 in Table 1). This feature was a 

part of the con feature for objects (food items and objects 

related to cooking tend to be small), but a part of the neutral 

feature for animals (animals of various sizes are eaten).  

 As we expected, first-order features impacted relational 

judgments differently for different categories of entities. For 

each of the topic dimensions mentioned above, the baseline 

model is forced to learn a single weight that applies to both 

animals and objects, and therefore cannot capture these 

differences between categories. In contrast, the hierarchical 

model accommodates these differences by assigning each 

topic dimension to the cluster corresponding to the most 

appropriate second-order feature (pro, con, or neutral), 

which may differ for each category. These second-order 

features have similar interpretations across different 

categories, and hence simplify the complex and distributed 

input representations from which relations can be acquired. 
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