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Supporting Material

1 Summary of the Particle Filters Implementation

We represent the probability distributions P (�ωt|Dt, m), P (�ωt|Dt, m) by a set of

particles and use particle filters (Liu, 2001) to update the distributions over time.

An implementation using particle filters supports the key computations required

by our theory – model selection, parameter estimation, and model averaging.

Particle filters approximate distributions like P (�ωt|Dt, M) by a set of discrete

particles {�ωμ
t : μ ∈ Γ}. In simulations reported in the present paper, we used 10000

particles (i.e., |Γ| = 10000), as we did not obtain significantly different results with

a further increase in the number of particles. To test significance, we sampled 10

times (each time with 10000 particles) and computed the variances of the

estimates of quantities of interest (e.g., our estimates of the weights).

We use particle filters to perform the sequential Bayesian updates. We initialize by

drawing samples {�ωμ
1 : μ ∈ Γ} from the prior distribution P (�ω), which is a

Gaussian distribution with a mean of zero and a small variance. Then we proceed

recursively following the prediction and measurement stages. Let {�ωμ
t : μ ∈ Γ} be

the set of particles representing P (�ωt|Dt) at time t. We sample from the Gaussian

distribution P (�ωt+1|�ωμ
t ) for each μ to give a new set of particles {�̄ωμ

t : μ ∈ Γ},

which represents the prediction P (�ωt+1|Dt).

In order to perform the correction step, we compute the importance weights

λμ = P (Ot+1|�̄ωμ
t+1, �xt+1) and normalize them to obtain λ̄μ = λμ/(∑

μ λμ). Then we

re-sample with replacement from the set {ω̄μ
t+1 : μ ∈ Γ} using probability λ̄μ. This

gives a new set {�ων
t+1 : ν ∈ Γ} of particles, which represent P (�ωt+1|Dt+1).
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To implement parameter estimation we estimate the causal weights by computing

the average with respect to the posterior distribution P (�ωt|{Ot}, {�xt}). This can

be estimated using the particles:

∫
d�ω(�ωt)P (�ωt|Dt) = (1/|Γ|) ∑

μ∈Γ
(�ωμ

t ). (1)

The use of particle filters provides a potential way to study the robustness of the

model – i.e., how its performance would be affected by small inaccuracies in the

model or degradations due to limited neuronal resources during computation, i.e.,

reducing the number of particles (Courville & Daw, 2007; Brown, & Steyvers,

2009; Sanborn, Griffiths, & Navarro, 2010). For the simulations reported in the

paper, we used a large number of particles (i.e., 10000) to ensure the precision of

the inference. Figure 1 illustrates the model estimations using a noisy-or rule for

the forward blocking paradigms discussed in section 4. The simulation results

indicate that the estimate of mean causal weights are approximately constant,b ut

their associated variance is increased when the number of particle filters is reduced.

When reducing the number of particles, the estimated causal weights increase their

variability .

We can also use particles to compute the model evidence. The model evidence is

expressed as P (dt|Dt−1)P (dt−1|Dt−2)...P (d1), where dt = (Ot, �xt). We evaluate

each term P (dt+1|Dt) =
∫

d�ωt+1P (dt+1|�ωt+1)P (�ωt+1|Dt) by

P (dt+1|Dt) = 1
|Γ|

∑
μ∈Γ P (dt+1|�̄ωμ

t+1).

To implement model averaging, we perform two steps. First, we estimate the

expected weights of each model as described above. Next we compute the model

evidence, as above, and then compute P (m|D). Finally we average with respect to
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Figure 1 . Simulation results for forward blocking as a function of particle

numbers. The forward blocking paradigm (6A+, 6AX+) is adopted from the study

by Vandorpe and De Houwer (2005). The results are based on 100 simulation runs.

The error bars indicate standard devisions

these to obtain the result.

From a computational perspective, post-training differs from pre-training in that

post-training precludes model selection prior to the blocking session. We assume

that the learner therefore proceeds by model averaging: running both the

linear-sum and noisy-max sequential models and then combining their estimate

weighted by the probability that each model could explain the post-training data.
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This procedure yields 〈ω〉 = P (m1|Dpost)ω̄m1 + P (m2|Dpost)ω̄m2, where Dpost are

the data in post-training (i.e., Phase 3), m1 and m2 represent the linear-sum and

noisy-max models, respectively, and P (mi|Dpost) is the evidence for each model

based on observations in the post-training phase. ω̄mi
is the estimated mean value

of causal strength using each model based on observations in the first two training

phases.

2 Parameters used in the simulations

The parameter σ2
T plays an important role in the temporal prior (see Eq. 12) to

control the amount of variation for the weights to change from trial to trial. We

set σT as 0.4 for all simulations to account for the blocking effect presented in

section 4 and the abstract transfer effects in section 5, so that the contributions

from the dynamic module is equated for all the models using different causal

integration rules. For the linear-sum and noisy-max model, two additional

parameters σh and σm (in Eq. 1 and 3) were set as 0.05. These two parameters

were used in the likelihood term to control the uncertainty in associating cues with

outcome variables. The parameter T in Eq. 6 for the noisy-max rule is 0.6. The

parameter values were selected to provide the best account for the pre-training

experiment in Section 5. The same set of parameter values was used to account for

the other experimental findings using deterministic causes in Section 4 and 5. In

section 6 modeling the primacy effect, the parameter σ2
T relevant to the learning

rate was reduced to 0.3 for learning the probabilistic causes.


