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Classification images reveal spatiotemporal contour interpolation q
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Abstract

Contour interpolation is the process whereby spatially separated object fragments (inducers) are connected on the basis of their con-
tour relations. An important characteristic of interpolation between simultaneously presented inducers is that observers rely on interpo-
lation regions to perform a discrimination task. However, it is unclear if the same property holds when inducers are separated in both
space and time. To address this question of spatiotemporal interpolation, we had participants discriminate spatiotemporally presented
‘‘fat’’ and ‘‘thin’’ noise-corrupted figures, when the figures were stationary (Experiment 1) or moving (Experiment 2), and when the con-
nections across vertical gaps were either real, interpolated (illusory), or absent. Classification images from both experiments showed that
noise regions near interpolated boundaries affect performance comparably to when real contours appear, but very little in the absence of
interpolation. The classification images also revealed information about the time course of interpolation and suggested that contour
interpolation between simultaneously visible inducers may be a special case of a more general spatiotemporal contour interpolation
process.1
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1. Introduction

Being that objects in ordinary visual scenes are partially
occluded, an important priority of visual processing is to
determine which visible fragments belong to the same

object. Central to this task is contour interpolation, the pro-
cess whereby spatially separated object fragments are con-
nected on the basis of their edge relations. Interpolation
aids in the determination of, among other things, how
many objects are seen at a time and what shapes those
objects have. As a canonical example, the Kanizsa square
is viewed, not as notched circles, but as four complete cir-
cles behind a single square that is partly camouflaged by
the background.

There are a number of models describing the conditions
under which interpolation occurs in static arrays (for
reviews, see Fantoni & Gerbino, 2003; Kellman, Guttman,
& Wickens, 2001). According to the model of Kellman and
Shipley (1991), contour interpolation occurs between visi-
ble contours (hereafter, inducers) that are geometrically
relatable, where relatable inducers are those that can be
connected by a smooth, monotonic curve that bends no
more than about 90 deg. Interpolation, according to
this model, typically occurs between first-order tangent
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discontinuities (Rubin, 2001; Shipley & Kellman, 1990; but
see Tse & Albert, 1998), which are sharp corners or junc-
tions of visible fragments.

Although the capacity to recover the shape and number
of objects from fragmentary information has most often
been studied with static displays, the visual system must
cope with fragmentation in space and time. When the per-
ceiver, an object, or both are moving, different parts of the
same object may project to the eyes at different times and
some parts of the object may never project. Notwithstand-
ing the challenges presented by this spatiotemporal frag-
mentation, perceivers appear to have impressive
capabilities for representing objects as coherent and persist-
ing (Bruno & Bertamini, 1990; Kellman & Cohen, 1984;
Palmer, Kellman, & Shipley, 2006). An object moving
swiftly behind foliage will be represented not as a series
of disconnected parts, but as a single, persisting thing.
Recent evidence suggests that this ability depends heavily
on processes that collect and interpolate contours between
fragments that appear sequentially over time. This process
we refer to as spatiotemporal contour interpolation and will
be the focus of the present paper.

1.1. Spatiotemporal contour interpolation

Many studies have explored how the visual system rep-
resents shape from information given over time (e.g., Bare-
nholtz & Feldman, 2006; Bruno & Gerbino, 1991; Burr,
1979; Helmholtz, 1867/1962; Kandil & Lappe, 2007; Mor-
gan, Findlay, & Watt, 1982; Nishida, 2004; Parks, 1965;
Burr & Ross, 1986). Fewer studies have looked at spatio-
temporal contour interpolation, in which parts of a shape
are never physically specified, and where contour interpola-
tion must fill-in the missing boundaries.2 In the present
work, we study spatiotemporal illusory contour formation,
where the elements that induce a given interpolated con-
tour never simultaneously appear.

In possibly the first study of spatiotemporal contour
interpolation (Kellman & Cohen, 1984), a black illusory
figure was induced by sequential interruptions in spatially
separated white elements on a black background. Displays
were arranged so that the illusory form could not be seen
from single or multiple static frames. The kinetic illusory
figures were seen when either the virtual figure rotated or
the background rotated. These results, along with others
(Bruno & Bertamini, 1990), indicate that inducing events
separated in both space and time can produce perception
of complete objects, although no formal model of the pro-
cess was proposed.

Palmer and colleagues (2006) carried out a more com-
prehensive analysis of spatiotemporal contour interpola-
tion. They proposed that the connection of object
fragments across space and time is governed by spatiotem-

poral relatability. They hypothesized that the processing of
spatiotemporal relatability was carried out via a dynamic
visual icon (DVI) which involves (1) persistence of recently
viewed, but now occluded or camouflaged fragments (Neis-
ser, 1967; Sperling, 1960), and (2) a position updating
mechanism, which predicts changes in the position of a
recently viewed object fragment (see Fig. 1). These pro-
cesses of persistence and position updating allow a determi-
nation as to whether recently and currently viewed
fragments satisfy the spatial geometric constraints of relat-
ability. The mechanisms of the DVI and relatability, oper-
ating together, offer a possible account of how objects are
coherently perceived despite spatiotemporal interruptions
in their appearance.

Spatiotemporal relatability as an account of spatiotem-
poral contour interpolation was tested by Palmer et al.
(2006) in a series of experiments. On each trial, subjects
saw three object fragments moving together behind aper-
tures. Subjects were subsequently presented with two
simultaneously presented arrays—perfectly aligned frag-
ments and slightly misaligned fragments (see Fig. 2). The
task was to determine which set of fragments they had just
observed behind the apertures. On the basis of spatiotem-
poral relatability, the authors predicted that when a frag-
ment set could be formed into a complete object via
spatiotemporal contour interpolation, discrimination
would be more accurate relative to when a set was unrelat-
able or when a set had rounded corners (no tangent discon-
tinuities). The predictions were confirmed: spatiotemporal

2 For brevity, we will use the terms ‘‘spatiotemporal interpolation’’ or
simply ‘‘interpolation’’ to refer to spatiotemporal contour interpolation,
unless clarity requires otherwise.

Fig. 1. A model of the spatiotemporal contour interpolation process. At
time t0 a rod fragment becomes visible; at time t1 that entire rod becomes
invisible; and, finally, at time t2 the top part of the rod appears. In order to
interpolate between the two rod portions, Palmer et al. (2006) suggest that
a dynamic visual icon stores contour and velocity information of the
fragment appearing at t0, and utilizes this information to interpolate with
the fragment appearing at t2. (Figure derived from Palmer et al., 2006, p.
537.)
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relatability led to markedly higher sensitivity to the align-
ment relations of fragments, and the presence of tangent
discontinuities contributed towards the sensitivity. Analo-
gous to numerous findings with stationary displays, these
data were interpreted as owing to the formation of unitary
objects, when viewed fragments were relatable. These
results, along with a number of direct comparisons of
dynamic interpolation with static controls, supported the
basic proposals of persistence, position updating, and the
application of relatability in spatiotemporal interpolation.

1.2. Filling-in during contour interpolation

Contour interpolation involves representing stimulus
regions as having contours when in fact no contours are
visible. What are the functional consequences of this fill-
ing-in process? To what extent, if any, can information
from interpolation regions affect perceptual performance?
An ideal observer would ignore task-irrelevant parts of a
stimulus, but experimental results suggest that human
observers in contour interpolation tasks and other filling-
in tasks (Nishida, 2004; Watamaniuk & McKee, 1995;
Yantis & Nakama, 1998) are not ideal in this respect.
For example, when subjects repeatedly discriminated
‘‘fat’’ and ‘‘thin’’ Kanizsa squares (Ringach & Shapley,
1996), performance became worse when fixed, straight-line
segments were presented near the interpolation paths. Cru-
cially, when the same lines appeared, but the inducers no
longer formed a fat/thin square (so that interpolation was
absent), the fixed lines did not affect performance.

Gold, Murray, Bennett, and Sekuler (2000) confirmed
Ringach and Shapley’s finding in a response discrimination
or classification image (CI) paradigm (Ahumada, 1996;
Ahumada & Lovell, 1971). In that study, subjects repeat-
edly discriminated fat or thin figures, which were corrupted
with static luminance noise. In three of five conditions,
those figures were real squares (real condition), interpo-
lated Kanizsa squares (illusory condition), or fragmented
squares (fragmented condition). The classification image
technique, to be discussed further below, revealed correla-
tions between pixel luminance and observer response and
showed that: (a) noise pixels near interpolated contours

in the illusory condition influenced observer response, even
though those pixels were objectively task-irrelevant; (b) the
degree of influence was comparable to when real contours
were present along those same paths; and (c) subjects were
responsive primarily to regions near the visible contour
fragments in the absence of real or interpolated boundaries
(the ‘‘fragmented’’ condition, see Fig. 3).

Gold and Shubel (2006) extended the CI technique to
investigate temporal properties of spatial contour interpo-
lation.3 The experiment was similar to that of Gold et al.
(2000) except that there were two conditions (real and illu-
sory) and the figures were shown in dynamic luminance
noise. A new CI was computed for each frame of the
dynamic noise, and the resulting classification image
‘‘movie’’ showed that pixels near illusory contours became
increasingly influential across the first 175 ms of stimulus
presentation.

1.3. Methods and motivations

In our experiments, we also employed classification
images to study contour interpolation. The CI methodol-
ogy draws from signal detection theory, and models an
observer’s response as being based on a decision variable
s, which equals the cross-correlation of a template T and
a stimulus I (Murray, Bennett, & Sekuler, 2002, p. 79;
Green & Swets, 1966). When I is corrupted with additive
external Gaussian white noise N, and when N is much
greater than co-existing internal noise, internal noise can
be neglected, and s can be expressed as:

s ¼ ðIþ NÞ � T

In a two-alternative task, the observer (assumed to be a
linear discriminator) will set some criterion c, and then give
one response if s P c, and give the alternative response
otherwise. The response classification methodology pro-
vides an estimate for T by indicating the degree of influence

Fig. 2. A paradigm for examining spatiotemporal contour interpolation. In Palmer et al. (2006), subjects discriminated vertically aligned and misaligned
sets of object fragments that moved behind a holed occluder. Discriminations were best when the fragments of the aligned set were relatable, to form a
coherent figure; second-best when the corners of the relatable condition were smoothed (‘‘rounded’’ condition), so as to weaken interpolation; and worst
when the top and bottom fragments of the relatable condition were swapped (permuted) so that interpolation was completely eliminated. These results
along with others suggest that even though different pieces of an object appear at different times, the visual system can interpolate between those pieces to
engage in unit formation. (Figure adapted from Palmer et al., 2006, p. 519.)

3 For the purposes of this paper, ‘‘spatial contour interpolation’’ denotes
contour interpolation that spans gaps only in space.
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each pixel has on the observer. A CI reveals—in picture
form—these pixel influences, with darkest and lightest pix-
els exercising the greatest effect.4

In the present paper, we use CIs to examine contour
interpolation between sequentially appearing inducers.
The most basic question was: When inducers are separated
in space and time, are interpolation regions relevant for
discrimination? To address this question, subjects in two
experiments discriminated figures, the tops and bottom of
which were connected by luminance-defined contours (real
condition), interpolated contours (illusory condition), or
no contours at all (fragmented condition). In Experiment
1, the figures were stationary and were embedded in static
luminance noise. These figures became visible by gradually
occluding and disoccluding dark background elements. In
Experiment 2, figures moved and were embedded in
dynamic luminance noise (frame rate = 17 Hz). These fig-

ures became visible by gradually occluding dark stationary
background elements. In both experiments, the spacing of
the background elements ensured that different figure parts
would become visible at different points in time. Conse-
quently, in both experiments, representing the entirety of
a discriminated (vertical) contour in the real and illusory
conditions required accumulating information over time.
In Experiment 2, representing an entire real or illusory con-
tour additionally required updating the positions of tempo-
rarily camouflaged figure fragments. In both experiments,
if CIs show that pixels near interpolated and real contours
have similar influence, and that pixels between inducers do
not strongly affect performance in the absence of contour
formation, then spatiotemporal contour interpolation can
be considered to have functional effects that go beyond a
mere phenomenal presence.

A secondary aim of the present paper was to consider
the relation between spatial and spatiotemporal interpola-
tion. If CIs show that subjects are not sensitive to interpo-
lated regions, then that would suggest that spatial and
spatiotemporal contour interpolation involve fundamen-
tally different processes. On the other hand, if our results
mirror the fragmented, illusory, and real CIs of Gold
et al. (2000), it would support the conjecture that spatial
contour interpolation is a limiting case of spatiotemporal
contour interpolation (Palmer et al., 2006). On that view,
spatial interpolation may be a case of spatiotemporal inter-
polation that involves minimal persistence and zero posi-
tion updating.

Although the goal of this study was not to evaluate time
course, Experiment 2 provided insights into the microgen-
esis of spatiotemporal contour interpolation. In the follow-
ing, we will briefly remark on how spatiotemporal contour
formation unfolds over time, and how it compares with the
processes involved in representing real or fragmented spa-
tiotemporal figures.

2. Experiment 1: Spatiotemporal contour interpolation for

static objects

2.1. Methods

2.1.1. Subjects

The first author and two paid UCLA students per-
formed between 1200 and 2500 trials per session and (typ-
ically) one session/day over the course of six weeks. One of
the paid subjects did not finish. To ensure external validity,
12 additional subjects (four/condition) performed two 1-h
sessions in exchange for class credit. Of the 14 subjects
who finished, all had normal or corrected-to-normal vision
and all but the author were naive to the purposes of the
experiment.

2.1.2. Apparatus

The displays were achromatic and were presented on a
Macintosh computer monitor with a resolution of
1600 · 1200 pixels and a refresh rate of 85 Hz. Subjects

Fig. 3. Classification images revealing spatial contour interpolation (Gold
et al., 2000). Each row shows for a condition, high contrast alternatives
(fat/thin) and an average classification image resulting from 30,000
discriminations between those alternatives. Discriminations were difficult
because the alternatives were noise-corrupted and presented with reduced
contrast. The CIs show that subjects were affected by information along
illusory contours similarly to when actual information appeared along
those contours; but when there were no shape contours (fragmented
condition), noise pixels near the inducers were primarily influential.
(Figure derived from Gold et al., 2000, p. 663.)

4 Templates reveal a process of linear summation, as described above,
but there does not appear to be a consensus as to whether they also reveal
representations. Because extant research tentatively endorses (Gold &
Shubel, 2006) or is consistent with (e.g., Abbey & Eckstein, 2002; Neri &
Levi, 2006) the view that CIs reveal representations, and because we are
unaware of any argument that explicitly rejects this view, we will regard
templates as plausibly revealing characteristics of contour interpolation
representations.

B.P. Keane et al. / Vision Research 47 (2007) 3460–3475 3463
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were seated in a darkened room and were positioned in a
headrest 30 in. from the monitor, creating a viewable
screen that subtended an angle of 29 by 22 deg. The back-
ground luminance was 37 cd/m2. All displays were pro-
grammed in Matlab using Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997).

2.1.3. Stimuli

2.1.3.1. Oval characteristics. Eight dark ovals (four on bot-
tom, four on top) translated horizontally from left to right
at 8.4 deg/s for 447 ms. The ovals moved under an opaque
figure that was the same color as the background. Numer-
ous small ovals were chosen rather than two large ovals,
because spatiotemporal interpolation has been found to
be more robust in the first case (Palmer, 2003). Oval con-
trast determined the difficulty level (see below). The opaque
figure’s oblique and horizontal edges became visible only
when they occluded the ovals in particular frames (see
Fig. 4C). Ovals of the same row were separated from one
another by 30 arcmin, and the first oval of the top and bot-
tom rows were always misaligned by 15 arcmin. The mis-
alignment ensured that vertically aligned inducers never
provided information along a vertical edge simultaneously.
In particular, the time interval between when subsequent
edges became fully visible was between 12 and 24 ms. In
the illusory and real conditions, the oval dimensions were
39 · 10 arcmin and the centers of the translating ovals
struck the visible horizontal edges of the stationary figure.
In the fragmented condition, the ovals were positioned and
shaped the same as before except that the top of the lower
ovals and the bottom of the upper ovals were each
extended vertically by 10 arcmin. We extended the ovals
in this way because the 6 arcmin misalignment between
each pair of oblique edges from the top and bottom frag-
ments in the fragmented condition was, phenomenologi-
cally, not enough to block interpolation (interpolation
has been shown to tolerate up to about 20 arcmin of mis-
alignment, Shipley & Kellman, 1992). An advantage to
our non-interpolation control is that, in contrast to what
some others have used (e.g., Lee & Nguyen, 2001), the ver-
tical distance between the oblique edges of inducers in the
fragmented display is the same as that of the illusory
displays.

2.1.3.2. Figure characteristics. Although the stimuli in the
illusory and real conditions appeared to be single rectan-
gles, in all conditions figures were composed of two verti-
cally aligned trapezoids that blended in perfectly with the
gray background. In the illusory and real conditions, each
trapezoid of a pair either tapered inward toward the center
or extended slightly outward toward the center to provide
the appearance of a single fat or thin rectangle. Also, only
the peripheral horizontal contour of a trapezoid was visible
(since the interior horizontal contour blended in with the
background). In the fragmented condition—because the
ovals were elongated—one observed both horizontal edges

of each trapezoid, and the trapezoids appeared either thin
(tapering inward) or fat (see Fig. 4A).

In all conditions: the vertical length from the bottom of
the lower trapezoid to the top of the upper trapezoid was
78 arcmin, the top of the upper trapezoid always measured
39 arcmin horizontally, and the bottom of the upper trap-
ezoid measured 35 arcmin horizontally for the thin
response and 43 arcmin horizontally for the fat response.
The top trapezoid measured 19 arcmin vertically. The frag-
mented condition differed from the illusory condition on
the lower trapezoid dimensions. In the fragmented condi-
tion, for both response types, the lower trapezoid always
had the same dimensions as the top trapezoid.

In the illusory conditions, the lower trapezoid was a
reflection about the horizontal axis of the upper trapezoid.
The real condition was exactly the same as the illusory con-
dition except that the former additionally involved real
contours that appeared roughly were the illusory contours
would be. To make the real condition comparable to the
illusory condition, half of a real luminance-defined contour
appeared at a time (as shown in Fig. 4C). A half real con-
tour appeared exactly when the figure corner to which it’s
closest overlapped with a black oval. For example, the bot-
tom half of the left real contour appeared exactly when a
black oval overlapped with the lower left corner of the
fat/thin rectangle; the top half of the same contour
appeared exactly when the top left corner of the rectangle
overlapped an oval. The same applied for the right con-
tour. Because of the spacing of the ovals, the top and bot-
tom half of either the left or right real contours never
simultaneously appeared. Thus seeing complete contours
in both the illusory and real conditions required accumu-
lating information over time, but the illusory condition
additionally involved contour interpolation.

2.1.3.3. Noise characteristics. The discriminated figures
were embedded in static luminance noise following a
Gaussian distribution. There was one noise field for all
frames of a trial. The Gaussian noise distribution was trun-
cated to ±2 standard deviations from the background
luminance (as in Murray, Bennett, & Sekuler, 2005). The
root-mean-square (RMS) contrast of a noise field (after
truncation) was 13%. Noise ‘‘pixels’’ were composed of
eight screen pixels (4 vertically · 2 horizontally) and had
dimensions of 4 · 2 arcmin, creating a power spectral den-
sity of 46 mdeg2.5 Elongated dimensions of the noise pixels
made it easier to capture the expected lower and higher
spatial frequencies of the vertical and horizontal dimen-
sions, respectively. Reducing the dimensionality of the
input space in this way was expected to increase the sig-
nal-to-noise ratio (e.g., Ringach, Sapiro, & Shapley,
1997). To further increase SNR, we limited position uncer-
tainty by decreasing the noise field area. The noise field

5 A noise ‘‘pixel’’ will refer to a group of eight screen pixels that compose
a unit of luminance noise, unless stated otherwise.

3464 B.P. Keane et al. / Vision Research 47 (2007) 3460–3475



Author's personal copy

measured 78 arcmin vertically by 60 arcmin horizontally so
that the peripheral horizontal borders of the figures in all
three conditions were coincident with the horizontal bor-

ders of the noise field (see translucent square regions in
Fig. 4C). Consequently, the lower portion of the lower
ovals and the upper portion of the upper ovals never were

Fig. 4. Stimuli in Experiment 1. (A) Dimensions for fat/thin real, illusory and fragmented rectangles in Experiment 1. The dotted lines indicate the shape
that subjects would typically see. (B) Dimensions of ovals that move behind the shapes. Ovals in the fragmented condition are elongated to produce a
percept of disconnected fragments. Oval dimensions and spacing ensure that different parts of shapes become visible at different times. (C) A schematic
representation of two frames (T1 and T2) from a fat and thin trial for each of the three conditions of Experiment 1. The translucent square represents the
region that would be corrupted by static luminance noise. The arrows represent constant motion (8.4 deg/s) of the dark ovals.

B.P. Keane et al. / Vision Research 47 (2007) 3460–3475 3465
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affected by noise. In each trial, a noise field appeared
exactly when the ovals moved.

2.1.4. Procedure

At the beginning of a trial, the black ovals emerged
gradually from behind an otherwise invisible occluder.
The ovals stopped moving exactly when all eight of the
ovals no longer overlapped with the noise field. A white fix-
ation point appeared in the center of the noise field and was
present at all points during a trial. It was emphasized to
subjects at the beginning of the experiment that it was
‘‘extremely important’’ to keep focused on the fixation
point, even if they felt that that would degrade their perfor-
mance. Subjects were also reminded of the importance of
fixation after every 300 trials. The task in the illusory or
real condition was to indicate via a button-press whether
a fat or thin rectangle was presented. The task in the frag-
ment condition was to indicate (via a button-press) whether
the trapezoid fragments were fat or thin.

Signal contrast was modulated by altering oval dark-
ness. A psychometric function determined a contrast level
that would generate 70% performance. Specifically, we esti-
mated threshold performance by running subjects on 40 tri-
als per contrast level, with the following (Weber) contrast
levels: 70%, 60%, 50%, 40%, 30%, and 20%. The selected
contrast level remained fixed within a session of trials,
but would be occasionally adjusted between sessions if per-
formance deviated significantly from 70% (Murray et al.,
2005, p. 142).

Trial types were blocked for the first two observers and
each subject ran 8700 trials per block. For MC the order
was: real, illusory, fragment. For observer BPK, the order
was: illusory, fragment, real. Before each block, a subject
received 40 high contrast practice trials of the condition.
Four subjects/condition were subsequently added and each
of these subjects began with 40 high contrast trials, and a
psychometric function. Those subjects on average per-
formed 2775 trials per condition on exactly one condition.
The total number of trials per condition was 28,500,
namely 8700 (BPK) + 8700 (MC) + 11100 (four additional
naı̈ve subjects). When subjects responded, a correct
response was marked with a high beep and an incorrect
response was marked with a low beep. To reduce fatigue,
subjects received a 3-min, forced break after every 300
trials.

2.2. Dependent measures and data analysis

Two stimuli (S1,S2), denoting the ‘‘fat’’ and the ‘‘thin’’
figures, and two responses (R1,R2), denoting the ‘‘fat’’
and the ‘‘thin’’ responses, generated four possible stimu-
lus–response categories for each trial, S1R1, S2R1, S1R2
and S2R2. To derive a raw classification image for a condi-
tion, we determined the average noise field for each of the
four stimulus–response categories of that condition. Each
of these noise fields was computed from trials across all sub-
jects who ran that condition. These four average noise fields

were then combined: CI = (S1R1 + S2R1) �
(S1R2 + S2R2). On this coding schema, light CI regions
denote a positive correlation between pixel contrast and a
‘‘fat’’ response; dark regions indicate a negative correlation.
Next, each raw classification image was convolved with a
5 · 5 pixel kernel that is the outer product of [1 1.6 3 1.6
1]T. The border regions that could not be accurately com-
puted in the convolution span 8 screen pixels (9 arcmin) each
on the top and bottom, and four screen pixels (4 arcmin)
each on the left and right. Dotted white lines around the
periphery in the CIs of Fig. 5 mark off these affected
regions.

To examine the statistical significance of CI regions,
convolved images were quantized with analytically derived
thresholds (see Appendix A). In the quantized images, pix-
els significant at p < .001 are illustrated as black or white;
pixels significant only at p < .01 are illustrated as faded
black or off-white. All other pixels in the quantized image
are deemed non-significant and are illustrated as mean gray
(see Fig. 5).

Fig. 5. Classification images from Experiment 1: Convolved and quan-
tized CIs derived from six observers (five naive) from each of the three
conditions in Experiment 1. As a signal landmark, superimposed ovals are
shown, where one oval from each row is occluded by an unrotated
fragment edge. The dotted line rectangle includes exactly the CI region not
adversely affected by the convolution process. In the quantized images,
pixels that are white or black are significant at p < .001; the off-white and
faded-black pixels are significant only at p < .01.

3466 B.P. Keane et al. / Vision Research 47 (2007) 3460–3475



Author's personal copy

2.3. Results and discussion

Weighted average performance levels (% correct) for all
three conditions ranged between 72.3 (illusory) and 74.2
(real). The average signal (Weber) contrast was 32%,
54%, and 57% for the real, fragmented, and illusory condi-
tion, respectively. There was virtually no response bias; the
percentage of ‘‘thin’’ responses for the real, illusory, and
fragmented conditions was 51.2%, 51.0%, and 49.9%,
respectively.

Classification images from Experiment 1 are shown in
Fig. 5. In all conditions, noise regions strongly influenced
response. Whereas only about five pixels would become
significant by chance in a condition, the total number of
significant pixels (p < .01) was 80 in the real condition,
140 in the illusory condition, and 82 in the fragmented con-
dition. More importantly, regions near interpolated and
luminance-defined boundaries affected performance com-
parably, with significant pixels appearing near discrimi-
nated boundaries in both cases. Regions between
inducers were not active in the absence of real or interpo-
lated contours. Consequently, even when inducers are pre-
sented gradually and sequentially, and so even when
contour information must be accumulated over time, inter-
polation regions appear to influence performance. These
results are very much in accord with those yielded with spa-
tial displays (as shown in Fig. 3), and suggest an important
commonality between spatial and spatiotemporal contour
interpolation.

Another noteworthy result from this experiment is the
fact that subjects could perform the task at all. In the
illusory condition, subjects could effortlessly perceive
and discriminate fat and thin high-contrast figures, even
though the average total duration that at least one pixel
appeared on an inducing edge was 71 ms. The ability to
interpolate in these circumstances probably owes to spa-
tiotemporal receptive fields that integrate over durations
of 100 ms (Barlow, 1958; Burr, 1981; Burr, Ross, &
Morrone, 1986; Ross & Hogben, 1975), and also to ico-
nic memory mechanisms that subsequently store orienta-
tion (Von Wright, 1968) and shape information (Turvey
& Kravetz, 1970). Such mechanisms may effectively pro-
long and stabilize the appearance of a physically tran-
sient stimulus, and thereby allow the visual system to
interpolate with less information (Palmer et al., 2006,
pp. 527–531).

3. Experiment 2: Spatiotemporal contour interpolation for

moving objects

CIs from Experiment 1 showed that pixels near inter-
polated and real contours paths affected performance
comparably, but those same pixels did not have an affect
when contours were absent. These results show the func-
tional consequences of spatiotemporal interpolation, and
suggest a fundamental commonality with spatial interpo-
lation, at least when figures are stationary. In Experi-

ment 2, we examine if the same conclusions hold when
figures move. Specifically, parts of a real, illusory, or
fragmented figure were presented sequentially, as in
Experiment 1, but figures translated across dark station-
ary background elements. Interpolation in this second
experiment required that a subject both store and update
the position of previously viewed fragments, so that they
could be related to subsequently appearing fragments. To
capture how this process unfolds, rather than having one
noise field per trial and one CI per condition—as in
Experiment 1, there was a new static noise field for each
of the nine frames of movement (frame rate = 17 Hz),
and a CI was computed for each of those frames (to pro-
duce a CI ‘‘movie’’). Although dynamic noise dramati-
cally increased the number of trials needed to derive
reasonable CIs, it had the advantage of providing ‘‘snap-
shots’’ of how an object was represented from moment
to moment. If subjects treat illusory contours like real
contours and differently from fragmented contours, then
a fundamental characteristic of spatiotemporal interpola-
tion will have been uncovered. Such a finding would fur-
ther motivate the conjecture that spatial contour
interpolation is a special case of spatiotemporal contour
interpolation.

3.1. Methods

3.1.1. Subjects

Seventy-five UCLA students who were naive to the pur-
poses of the experiment participated for class credit in one
condition for one or two sessions. Each observer ran
between one and two hours and completed between 1400
and 3500 trials. The total number of trials completed across
all naı̈ve subjects was 45,000 per condition. In addition, the
first author performed 15,000 trials for each of the three
conditions. Thus, each condition involved exactly 26 sub-
jects and 60,000 trials. All observers reported normal or
corrected-to-normal vision.

3.1.2. Apparatus

The apparatus was the same as Experiment 1.

3.1.3. Stimuli

All trials involved six dark stationary rectangles—three
on bottom, and three on top (see Fig. 6). Rectangles in a
row were equally spaced from one another by 24 arcmin.
To help create the sequential appearance of the figure
edges, the left-most top rectangle was horizontally misa-
ligned from the left-most bottom rectangle by 12 arcmin.
In the illusory and real conditions, the rectangles measured
10 arcmin by 30 arcmin. In the fragmented condition, the
lower portion of the top rectangles and the upper portion
of the bottom rectangles were extended by 8 arcmin to cre-
ate the appearance of distinct fragments.

Figures in all conditions were created by two vertically
aligned gray trapezoids, the left sides of which incorpo-
rated right-angles and were invisible. In the illusory and
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real conditions, the central horizontal contour of a trape-
zoid was coincident with the central horizontal contours
of a row of black rectangles. In those same conditions, each
trapezoid pair either tapered inward toward the center or
bulged slightly outward peripherally to provide the appear-
ance of a single rectangle that bulged outward or tapered
inward on the right side. In the fragmented condition, the
stationary rectangles were elongated to produce the percept
of two trapezoids, the right sides of which either sloped
downward and to the right (labeled ‘‘fat’’) or sloped down-
wards and to the left (‘‘thin’’).

In all trials, the top trapezoid measured 15 arcmin ver-
tically, and the lower horizontal contour was 2 arcmin
shorter than the upper horizontal contour for a thin
response and was 2 arcmin longer for a fat response.
Thus, the non-right angles of a trapezoid were ±6.4 deg
from the vertical. In all trials, the distance between the
horizontal, peripheral contours of the bottom and top
trapezoid was 78 arcmin. In the illusory and real condi-
tions, the bottom trapezoid was a reflection about the cen-
tral horizontal axis of the top trapezoid. The fat and thin
bottom trapezoids in the fragmented condition were the
thin and fat bottom trapezoids of the illusory condition,
respectively. This ensured that each frame of the two con-
ditions would contain the same discriminated visible con-
tour edges (across fat and thin trials). In all trials, the
right vertices of the trapezoids expanded to the right at
2.1 deg/s, whereas the left side of the trapezoid remained
stationary.

In the illusory and real conditions, the translation of the
right vertices of each trapezoid yielded the impression of a
contour of a single figure translating from left to right. In
the fragmented condition, the impression was of two trap-
ezoids the right vertices of which translated from left to
right. The real condition differed from the illusory condi-
tion in that the real contour information appeared sequen-
tially over time along with the inducers. The top half of the
full vertical contour appeared during frames when the top
inducer was visible, and the bottom half of the full contour
appeared when the bottom inducer was visible, as shown in
Fig. 6C. In all trials, there were nine frames (59 ms/frame)
in a motion sequence, though the signal was always absent
in the first and ninth frames. In all conditions, each task-
relevant frame either provided shape information on the
top half of the figure, or provided information on the bot-
tom-half of the figure, but never provided both kinds of
information. Although the displays were somewhat compli-
cated, and although the fragments that produced interpola-
tion were relatively sparse, naive observers were able to see

the contours quickly, with some subjects picking up the
task on the first trial of practice.

In all trials, the noise field measured 78 by 58 arcmin
and covered all but the outer 15 arcmin of the dark rectan-
gles. The noise was dynamic in that there was a new static
noise field for each of the nine frames of the motion
sequence. Slower frame-rates were used, because otherwise
CI SNR would be greatly reduced (Xing & Ahumada,
2002). At fast frame-rates, there might be significantly
greater uncertainty as to what points match between
frames, possibly because of the introduction of non-addi-
tive internal noise (Barlow & Tripathy, 1997; Lu & Liu,
2006; Morrone, Burr, & Vaina, 1995). Within a frame,
the noise had a RMS contrast of 11% (after truncation),
creating a power spectral density of 35 mdeg2.

3.1.4. Procedure

The task in the illusory or real condition was to indicate
via a button-press whether a fat or thin rectangle was pre-
sented. The task in the fragment condition was to indicate
(via a button-press) whether the trapezoid fragments were
fat (sloping downward and to the right) or thin (sloping
downward and to the left). Task difficulty was modulated
by altering the contrast of the dark rectangles. Every 400
trials a subject was required to take a 1-min break to avoid
fatigue. Observer BPK performed (in chronological order)
the illusory, fragmented, and real conditions. All other
aspects of the procedure were the same as Experiment 1.

3.2. Dependent measures and data analysis

Individual data were combined, as described in Experi-
ment 1. The same analyses were used as in Experiment 1,
except that we calculated a classification image for each
of the nine frames in the motion sequence.

3.3. Results and discussion

Weighted average performance levels (% correct) for all
three conditions ranged between 73.3 (real) and 73.6 (illu-
sory). There was virtually no response bias; the percentage
of ‘‘thin’’ responses for the real, illusory, and fragmented
conditions was 50.6%, 51.4%, and 49.7%, respectively.
The average signal (Weber) contrast was 36%, 41%, and
48% for the real, fragmented, and illusory condition,
respectively.

Classification images for Experiment 2 are shown in
Fig. 7 and the numbers of significant pixels per frame are

Fig. 6. Stimuli from Experiment 2. (A) Dimensions for fat/thin real, illusory, and fragmented figures in Experiment 2. The moving figures are dotted
because they are invisible unless they overlap with the dark background rectangles. (B) Dimensions of dark rectangles over which figures move.
Background rectangles in the fragmented condition are elongated to produce a percept of disconnected fragments. In all conditions, the top and bottom
part of a figure never simultaneously overlap with a background rectangle to produce contour information along a vertical edge. (C) A schematic
representation of the two trial types at all nine frames of a trial for each of the three conditions. The duration of each frame was about 59 ms, and the time
course is shown for reference. The translucent square represents the region that would be corrupted by dynamic luminance noise, and the arrows represent
constant motion of the dotted figure.

b
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shown in Fig. 8. Pixels in all three conditions influenced
response at a rate much greater than chance, with the
greatest number of pixels influencing a response in frame
4 in the illusory and real conditions, and in frame 5 in
the fragmented condition. More importantly, in certain
frames (especially frame 4), regions between inducers influ-

enced performance in the illusory condition comparably to
when there were luminance-defined contours. Those same
regions were not active in the absence of real or interpo-
lated boundaries. Consequently, when contours move and
when inducers appear sequentially, interpolation can be
observed to have functional effects similar to real contours.

Fig. 7. Classification images from Experiment 2: Convolved and quantized classification images and time courses for each of the nine frames of motion are
shown for each condition. The first and last frames never contained signal, and consequently do not contain many significant pixels. The superimposed red
elements show the average position of a fragment against the dark background rectangles for that frame and condition. The dotted lines around the border
of each frame mark the peripheral regions that could not be properly calculated in the convolution. The diamonds indicate the average position of inducer
edges for a frame and condition. In the quantized images, pixels that are white or black are significant at p < .001; the off-white and faded-black pixels are
significant only at p < .01.
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These results resemble those found with spatial interpola-
tion displays (Gold et al., 2000; see Fig. 3; Gold & Shubel,
2006) and, again, suggest a fundamental similarity between
the two.

We note several other aspects of the CIs. As shown in
Fig. 7, dominant CI features are positioned closely to the
moving edge of an inducer, suggesting that responses were
fairly tied to the signal. Also, pixels along the entirety of
the illusory contour became most influential between 118
and 176 ms after the appearance of the first (top) inducer.
This is consistent with the 175 ms time course estimate
for spatial contour interpolation (Gold & Shubel, 2006).
Finally, in the real condition a complete CI contour formed
in frames 3 and 7, and in the fragmented condition, a light
CI region near the top inducer and a dark CI region near
the bottom inducer appeared together in frames 4 through
7. (The bottom portion of the fragmented CI has a polarity
opposite to the illusory CI because the bottom fat and thin
fragments of the two conditions were anti-correlated.)
Since the top and bottom parts of a figure never became
visible in any one frame in any condition, the hypothesized
mechanisms of iconic storage and position updating (Pal-
mer et al., 2006) appear not to be specific to spatiotemporal
contour interpolation.

4. General discussion

In two experiments, subjects discriminated fat and thin
noise-corrupted figures, the tops and bottoms of which
were connected by illusory contours, luminance-defined
contours, or no contours at all. In Experiment 1, the figures
were stationary and became visible by gradually occluding
and disoccluding dark moving background elements; in
Experiment 2, the figures moved and became visible by
gradually occluding and disoccluding dark stationary
background elements. In both experiments, the distribution

of the background elements ensured that the top and bot-
tom parts of a discriminated contour never appeared
together at once. Producing a complete figural percept in
Experiment 1 required storing fragment information, while
Experiment 2 additionally required updating the positions
of fragments. CIs from both experiments showed that pix-
els along spatiotemporally interpolated boundaries influ-
enced responses comparably to when real contour
information appeared along those same boundaries. By
contrast, in displays that did not support interpolation,
there was little indication of pixel influences in regions
between visible figure fragments. These results, taken
together, suggest that spatiotemporally interpolated
boundaries have consequences that go beyond a phenome-
nal presence.

In the following, we will discuss the relation between
spatial and spatiotemporal contour interpolation, and the
microgenesis of illusory contours as revealed in Experiment
2. We then consider an objection to using CIs as a method
for revealing early or mid-level visual processing. We con-
clude with suggestions for future research.

4.1. Spatial contour interpolation as a limiting case of
spatiotemporal contour interpolation

Because our CIs resemble those shown previously with
spatial displays (i.e., Gold et al., 2000), an interesting pos-
sibility is that spatial interpolation may be a limiting case
of spatiotemporal interpolation. Spatiotemporal interpola-
tion is hypothesized to involve storing information about
momentarily invisible fragment edges, and (if necessary)
updating the positions of those edges for the purpose of
interpolation with visible fragment edges. Here, we suggest
that spatial interpolation occurs in cases where minimal
information is stored, and where there is no position updat-
ing. There seems to be growing consensus that form and
motion information are combined early. When subjects
detected the drift direction of sinusoidal gratings masked
by reverse phase gratings of various spatial and temporal
frequencies, there was a coupling between the spatial and
temporal frequency tuning functions, leading the authors
to infer the operations of spatiotemporal receptive fields
(Burr et al., 1986). More recently, when subjects identified
objects moving behind a surface with narrow slits, spatial
frequencies theoretically inaccessible from static views were
utilized to decide global form and motion (Nishida, 2004).
It was hypothesized that form and motion are entwined at
very early stages, partly as a result of the direction and ori-
entation specificity of certain V1 cells (Emerson, Bergen, &
Adelson, 1992; Hubel & Wiesel, 1968). In a different study,
when subjects determined whether partially occluded out-
line objects orbited clockwise or counterclockwise, perfor-
mance depended on relatively low-level properties such as
contrast, and temporal and spatial frequency (Lorenceau
& Alais, 2001). These properties were inferred to influence
the perception of global figure motion at early processing
stages. Lennie (1998) argued on the basis of cortical

Fig. 8. Significant pixels in Experiment 2: Number of significant pixels as
a function of frame number and time course (ms). Whereas only about five
pixels would become significant by chance in each frame, many more
pixels influenced response in frames of each condition.
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organization that form and motion (among other features)
are coupled at early levels in processing. Although none of
the foregoing studies specifically address spatiotemporal
contour interpolation, they all appear to agree that deter-
mining the dynamic properties of an object is intimately
associated with determining its form, and that this link
occurs very early on in visual processing. Given that con-
tour interpolation is itself a low-level process that is used
for determining form (Grosof, Shapley, & Hawken, 1993;
Halgren, Mendola, Chong, & Dale, 2003; Lee & Nguyen,
2001; Von der Heydt, Peterhans, & Baumgartner, 1984),
it is reasonable to think that contour interpolation depends
on spatiotemporal mechanisms that handle static arrays as
a limiting case. Such a view fits with other recent data (e.g.,
Keane, Kellman, & Elwell, 2007; Palmer et al., 2006) and
makes ecological sense, in that visual systems likely evolved
to serve the needs of observers who perceive moving
objects or who perceive stationary scenes during self-
motion (Gibson, 1966, 1979).

4.2. Time course of contour interpolation

A number of paradigms have been used to estimate the
time course of illusory contour formation. Gold and Shu-
bel (2006) cross-correlated CIs from an illusory condition
and a blurred ideal observer template from a real condition
(with inducer regions removed). The correlation between
the two images reached a peak value at about 175 ms
and interpolation was inferred to require about the same
amount of time to complete. Guttman and Kellman
(2004) found that when observers determined whether a
dot fell inside or outside a Kanizsa figure, precision and
accuracy reached an asymptote at about 120–140 ms of
stimulus presentation; contour interpolation was inferred
to complete within the same period. Other psychophysical
(e.g., Reynolds, 1981; Ringach & Shapley, 1996) and neu-
roimaging studies (Murray, Foxe, Javitt, & Foxe, 2004;
for a review, see Seghier & Vuilleumier, 2006) have pro-
vided similar estimates for the completion of illusory con-
tours. The CI results from Experiment 2 indicate a time
course that is consistent with the foregoing. If we assume
that (a) interpolation begins once the first inducer appears,
(b) noise pixels become most influential mid-frame, and (c)
pixels exercise influence when their locations are incorpo-
rated into a representation, then illusory contours appear
to form within 147 ms (since a CI contour first appears in
the fourth CI frame).

Relative differences between CI conditions also fit with
previous data on time course. Pixels became influential ear-
lier in the real than in the illusory condition (see also,
Fig. 8) and this corroborates previous findings that real
contours are processed more quickly than their illusory
contour counterparts (Gold & Shubel, 2006; Guttman &
Kellman, 2004). Moreover, in the fragmented condition,
CI pixels near both inducers were not clearly used until
frame 4—a frame later than the illusory condition. This
supports previous findings that information is extracted

more quickly from relatable than from unrelatable object
parts (Moore, Yantis, & Vaughan, 1998).

It should be pointed out in passing that although others
have inferred absolute time course from CIs (Gold & Shu-
bel, 2006), and although our estimate of 147 ms fits with
previous estimates, the underlying assumption—that pixels
begin biasing a response when a representation first
forms—may not be true. For example, at t1 a pixel lumi-
nance value may appear at a point where a contour has
not yet formed, and by t2 this pixel information may be
extrapolated (along with inducer information) to another
point over which a contour has formed (Changizi & Wid-
ders, 2002; Nijhawan, 1994; Palmer et al., 2006). In this
case, a CI pixel would show up as significant at one loca-
tion in one frame, even though it influenced a representa-
tion that formed at a different (updated) location in the
next frame. Inferring time course from CIs as we have done
could also conceivably lead to an underestimation of pro-
cessing speed. Pixels appearing within one frame (f2) could
bias performance by altering (perhaps unstable) represen-
tations initially formed in the previous frame (f1), and this
bias could reduce or overshadow the pixel influences found
in (f1). Visual post-diction is evidenced in backward mask-
ing (Bachmann, 1994), and position mislocation (Eagleman
& Sejnowski, 2000), and may also occur during spatiotem-
poral figure formation. Although we are not in a position
to rule out extrapolation or post-diction, there is little rea-
son to suppose that either process is more prevalent in one
condition than another. Consequently, we regard classifica-
tion imaging as a useful tool for uncovering relative, if not
absolute, time courses for object formation.

4.3. Do fat/thin CIs reveal contour interpolation?

Gold et al. (2000) and Sekuler and Murray (2001) main-
tained that fat/thin CIs reveal ‘‘behavioral receptive fields’’
that correspond to perceptually completed contours. How-
ever, some have questioned whether CIs truly reveal low-
level filling-in processes. Gosselin and Schyns (2003)
showed that when subjects were asked to ‘‘detect’’ a non-
existent ‘‘S’’ in white noise over the course of 20,000 trials,
and when a CI was calculated (with only two stimulus–
response categories), the resulting images displayed the tar-
get letter. Might fat/thin CI features also derive from cog-
nitively driven top-down influences? We address this
concern by first acknowledging that attention and cognitive
strategy do affect low-level processing. Just as modulating
attention can affect the perception of motion coherence
(Liu, Fuller, & Carrasco, 2006), contrast (Pestilli & Carras-
co, 2005), and lightness (Tse, 2005), so too will it affect con-
tour interpolation (e.g., Montaser-Kouhsari & Rajimehr,
2004). Nevertheless, there are a number of reasons to
believe that fat/thin CIs clearly show contour interpolation
effects. First, the fat/thin paradigm itself has repeatedly
yielded results that are best explained in terms of interpola-
tion (Kellman, Yin, & Shipley, 1998; Ringach & Shapley,
1996). Displays consisting of relatable fragments can be
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discriminated more quickly and more accurately than a
number of non-relatable controls, and only relatable dis-
plays are affected by irrelevant lines placed between dis-
criminated edges. These data cohere with those of Gold
et al. (2000) and suggest that—at least in spatial dis-
plays—irrelevant information appearing near interpolation
paths automatically affect how subjects interpolate shape.
Second, in our experiments, subjects received feedback.
Rather than using the feedback to form approximately
ideal templates, subjects continued to rely upon the infor-
mation-less interpolation regions, indicating, again, that
the CI results are primarily stimulus-driven. Third, averag-
ing across subjects should result in incoherent CIs when
subjects are not sufficiently constrained by the stimuli
(Gosselin & Schyns, 2003, pp. 506–508); in our case, aver-
aging across subjects resulted in more salient CI features in
all three conditions. Fourth, in Experiment 2, interpolation
effects appeared only at some temporal intervals. This
would not obviously be expected if a cognitive template
maintained throughout the presentation sequence deter-
mined the observer’s responses. The fact that interpolation
estimates furnished by the CI data approximate earlier esti-
mates of interpolation or the fact that CI contour regions
become active earlier in the real condition suggests that
CIs are tapping into early processing (Guttman & Kell-
man, 2004). Finally, other CI researchers tentatively
endorse classification imaging for understanding low-level
processes. Neri and Levi (2006), for example, claim that
the evidence so far suggests that ‘‘noise classification
appears to target stages reflecting computations that are
very similar to those observed in physiological recordings’’,
although they think that more research is necessary before
firm conclusions can be made (pp. 2470–2472).

4.4. Future directions

The experiments presented in the present paper suggest
a number of avenues for future research, two of which
will be outlined here. First, the cases we examined con-
sider how the appearance of noise near interpolated
boundaries affects interpolated shape, but the opposite
causal relation is equally interesting. If subjects have to
identify whether a small target is lighter or darker than
the background, responses may be slower or less accurate
when the targets appear near interpolated boundaries of
fat or thin figures. Filling-in processes in apparent motion
affect how observers respond to a target (Yantis & Nak-
ama, 1998), and a similar effect might occur for interpo-
lated contours.

Another extension to the present work would be to
examine the effects of noisy interpolation regions on the
perception of spatiotemporally presented occluded (amo-
dal) figures. CIs show that both modally and amodally
completed figures are corrupted by noisy interpolation
regions in spatial displays (Gold et al., 2000), and so it is
reasonable to expect similar results to obtain in spatiotem-
poral displays. Such results would lend further support for

the claim that modal and amodal completion are subserved
by common interpolation mechanisms (Kellman, Garri-
gan, & Shipley, 2005, 2007; Kellman et al., 1998; Shipley
& Kellman, 1992; though see Anderson, 2007). Exploring
the relationship between boundary formation contexts—
whether modal and amodal or spatial and spatiotempo-
ral—will ultimately aid in categorizing and understanding
the processes central to forming representations of coher-
ent and persisting objects.

Appendix A

The standard deviation (r) of a filtered CI can be com-
puted analytically as follows. According to the derivation
by Murray, Bennett, and Sekuler, 2002 (details on p. 83),
when the CI is calculated by combining the four average
noise fields as (S1R1 + S2R1) � (S1R2 + S2R2), the vari-
ance of the CI is r2

c ¼ ð 1
n11
þ 1

n21
þ 1

n12
þ 1

n22
Þr2

N , in which nSR

denotes the number of trials in each stimulus–response cat-
egory, and r2

N is the variance of external noise (after trun-
cation). The filtered CI is computed by convolving the
kernel, K , with the original C, C, as K * C. Furthermore,
the variance of the filtered CI can be derived as

r2 ¼ VARðK � CÞ ¼
Pw

i¼1

Pw
j¼1kði; jÞ2r2

c¼
Pw

i¼1

Pw
j¼1kði; jÞ2

ð 1
n11
þ 1

n21
þ 1

n12
þ 1

n22
Þr2

N, where w is the kernel size. Accord-

ingly, the variance of the filtered CI is determined by the
kernel weights, the number of trials in each stimulus–
response category and the variance of added noise. The
foregoing analytical determination of the standard devia-
tion was confirmed via a bootstrapping method.
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