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Using an ‘‘information meter’’ provided by ideal
observer analysis, we measured the efficiency with
which human observers processed different walking
stimuli against luminance noise and spatial uncertainty
to either detect the presence of a walker or to
discriminate the walking direction. Human efficiency was
examined across four renderings of a human walker:
contour, point lights, silhouette, and skeleton. We
replicated the previous finding of low discrimination
efficiency in biological motion (Gold, Tadin, Cook, &
Blake, 2008) and also found low detection efficiency for
biological motion. Interestingly, in both detection and
discrimination tasks, the skeleton display was among
those yielding the highest level of efficiency in
processing visual information. This finding suggests that
structural information about the relative position of
joints, highlighted in the skeleton display, provides a
critical component of the internal representation for
biological motion.

Introduction

Humans show remarkable ability to recognize
objects from two-dimensional retinal inputs despite
drastic changes in their appearance. The ability to
recognize nonrigid objects is particularly challenging
because articulation and deformation entail a large
space of object configurations. A prime example of a
nonrigid object is the moving human body, which
involves many degrees of freedom in limb movements
and articulated body structure. Perception of biological
motion probably underlies what may be the most
sophisticated form of visual recognition processing.

However, people appear to readily recognize human
body movements (a special case of biological motion)
from very sparse visual input, such as a dozen
disconnected dot movements in a point light display
(Johansson, 1973).

Indeed, the human visual system can perceive a
variety of actions presented in a point light display in
an automatic, effortless, and robust manner. For
example, recognition of an action-in-motion sequence
can be achieved from a point light display as brief as
200 ms (Johansson, 1973), when contrast is assigned
randomly to each point light in each frame (Ahlstrom,
Blake, & Ahlstrom, 1997), when biological motion is
defined by texture (second-order motion) instead of
luminance (first-order motion; Ahlstrom et al., 1997;
Bellefeuille & Faubert, 1998), when only subconfigu-
rations of a human figure are presented as point lights
(Neri, 2009; Pinto & Shiffrar, 1999), when biological
motion is presented across apertures (Lu, 2010;
Shiffrar, Lichtey, & Heptulla Chatterjee, 1997), when
biological motion is masked by random-dot kine-
matograms (Bertenthal & Pinto, 1994; Cutting &
Kozlowski, 1977; Neri, Morrone, & Burr, 1998), and
when biological motion stimuli are presented in the
periphery (Thompson, Hansen, Hess, & Troje, 2007;
Thurman & Lu, 2013a; van Boxtel & Lu, 2011).

The remarkably rapid, accurate, and robust percep-
tion of biological motion appears to imply that the
human visual system is highly efficient in processing
impoverished visual inputs provided in point light
displays. However, as pointed out by Gold et al. (2008),
the claim of high efficiency in human perception of
biological motion cannot be warranted in the absence
of a method to precisely quantify how much informa-
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tion is in fact contained in a point light stimulus. Good
recognition performance, usually measured by accura-
cy or reaction time, may result from an intelligent
system that efficiently processes visual signals despite
the input being impoverished, noisy, or sparse.
Alternatively, good recognition performance might
arise from limited but sufficient input information that
is given to an inefficient system. To disentangle these
two potential explanations for the apparent efficiency
of human observers in recognizing biological motion, it
is necessary to measure (a) the informativeness of a
visual input, and (b) the efficiency with which the
human visual system processes this input information
to make recognition judgment.

It is therefore essential to work within a theoretical
framework that quantifies the amount of visual
information. The ideal observer (IO) approach, based
on Bayesian statistical inference, is a well-established
method to address this problem (Geisler, 2002; Green
& Swets, 1966). An IO can serve as an ‘‘information
meter’’ to compute the optimal performance for a
specific task, which then provides a quantitative
measure of the stimulus information embedded in the
input (e.g., Tjan, Braje, Legge, & Kersten, 1995). By
comparing human performance to the ideal, one can
calculate the statistical efficiency of the human visual
system, thereby quantifying the efficiency of the human
visual system in extracting, representing, and utilizing
key information in the visual stimulus to perform a
well-defined task.

Gold et al. (2008), for example, added dynamic
luminance noise onto image frames depicting walking
actions and compared the amount of information
contained in a display of point lights to that of the
corresponding full-figure display. They found that IO
performance with point lights was about the same as
with the full-body display, indicating that the two types
of displays provided a similar amount of information
relevant to the discrimination of walking direction.
However, human efficiency in identifying biological
motion was rather low in absolute terms (approxi-
mately 0.4% in efficiency for point lights vs. 2.5% for
full-figure stimuli), which challenged the common
dogma that humans are efficient in processing biolog-
ical motion (given their high accuracy in recognizing
actions from sparse stimuli such as the point light
display).

The present work extends the study by Gold et al.
(2008) to examine efficiencies of visual processing
across different input formats of biological motion and
different tasks under spatial uncertainty. In previous
work, four types of renderings for action stimuli have
been used to study biological motion perception. The
same human body movements can be displayed using
different renderings: contour, point light, silhouette,
and skeleton. Each of the rendering stimuli provides

different types of features in the visual input. For
example, the full-figure condition in Gold et al. (2008),
a silhouette, provides information about body shape
and associated movements. As the most commonly
used display in studies of biological motion perception,
point light stimuli appear to provide the sparsest and
the most compact information about the kinematics
involved in human body movements by only showing
joint movements. Contour-based displays, which con-
tain information about boundaries, have been widely
used in computer vision to track and recognize human
movements from raw video frames (Blake & Isard,
1998). However, it is unclear whether the human visual
system processes contour information efficiently. The
skeleton stimulus has been used less commonly in
psychophysical investigations of biological motion as
most studies have emphasized point light displays.
However, a skeleton conveys critical structural infor-
mation about the body, including not only joint
positions but also the relationships between joints
shown as connections (Feldman & Singh, 2006). At the
same time, the skeleton display, like the point light
display, eliminates detailed body shape. In previous
research, human ability to recognize actions regardless
of the rendering conditions of the stimuli has been
taken as evidence of the robustness of biological
motion perception. However, whether humans are
equally efficient in processing the same action rendered
in different ways remains unclear. If, on one hand,
biological motion perception depends on some visual
features that are salient in one rendering stimulus but
less prominent in others, we would expect that human
efficiency in processing the visual information may vary
across different rendering conditions. On the other
hand, if biological motion perception depends on a
more abstract representation of actions that is inde-
pendent of visual features, we would expect the same
efficiency in perception of biological motion across the
different rendering conditions. Thus by systematically
examining the distinct stimuli based on different
rendering conditions, we may be able to shed light on
the internal representation of biological motion that the
visual system uses and determine the certain critical
features on which the system operates.

In addition to varying the rendering of the action
inputs, we also manipulated the task (Abbey &
Eckstein, 2006) that observers were required to perform
under spatial uncertainty for biological motion per-
ception. In studies on biological motion perception,
two tasks have been used: detection tasks in which
observers judge whether the input contains an exemplar
of a visual type (e.g., a human walker) or contains pure
dynamic noise and discrimination tasks that require the
observer to make a more fine-grained discrimination
between subtypes of different actions (e.g., deciding
whether the walker was moving left or right). The two
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tasks are related in some ways. When the display
position of the target walker is unpredictable, partic-
ipants may need to first detect where the walker is
shown in the display and then recognize the walking
direction. If the processes take place in such a serial
manner, the visual processes underlying detection of
biological motion may constitute the initial processes
required for recognition of biological motion, in which
case detection efficiency would impose an upper limit
on the efficiency of recognizing biological motion.
However, previous research has shown that detection
and discrimination tasks can probe different types of
visual features in the stimuli (Neri & Heeger, 2002). If
discrimination of walking direction operates on a
different set of features, which are not used for
detection, it would be possible for discrimination
efficiency to exceed detection efficiency in some
conditions. The present study employed both detection
and discrimination tasks in order to explore these
possibilities.

We report two experiments that measured human
efficiencies with four displays of biological motion in a
detection task and a discrimination task, respectively.
The findings from the present study will allow us to
assess how efficiently humans detect/discriminate bio-
logical motion compared to other stimuli, such as
simple shapes, letters, and rigid objects. These results
will also shed light on the critical information used in
forming location-invariant representations of biologi-
cal motion to enable robust performance across
different tasks.

General methods

Apparatus

Stimuli were presented on a Dell monitor with a
refresh rate of 75 Hz and resolution of 1024 3 768. At
the viewing distance of 57 cm (maintained via a chin
rest), each pixel subtended 1.62 arcmin. The monitor
was calibrated with a Minolta CS-100 photometer. A
lookup table was constructed to allow linear division of

a luminance range, 1.96;170 cd/m2, into 256 pro-
grammable intensity levels. Experiments were con-
ducted in a dim room. We used Poser 4 software
(MetaCreation Inc.) and Photoshop to create the
stimuli and Matlab (MathWorks Inc.) and Psy-
chToolbox (Brainard, 1997; Pelli, 1997) to present the
stimuli.

Stimuli

Each stimulus display contained a dark target,
namely a human walker, on a gray (46.50 cd/m2)
window. The display window was centered on a black
(1.96 cd/m2) screen. The size of the display window was
120 pixels horizontally by 180 pixels vertically,
subtending 3.248 by 4.968 of visual angle. The target
was walking as if on a treadmill in one walking cycle
(including two steps), which consisted of 10 image
frames presented at a rate of 133 ms/frame. The center
location of the target in each trial was randomly
selected in a window of 20 3 30 pixels in size (0.548 3
0.818). The target in both experiments depicted a
human walker in one of the four rendering conditions:
contour, point light, silhouette, and skeleton in the
absence of noise (see Figure 1). All the four stimulus
types used two gray levels, one for the foreground and
another for the background. The luminance of the
background was constant, 46.50 cd/m2, and the
luminance of the foreground varied depending on the
contrast in each trial as determined by a staircase
procedure.

A silhouette walker was saved frame by frame using
MetaCreation Poser software under orthographic
projection. All pixels inside the bounding contour were
set to a uniform dark gray (foreground). The walker
subtended about 90 pixels horizontally by 140 pixels
vertically (2.438 3 3.868). The average number of
foreground pixels per frame was 3,086 in the silhouette
stimulus, corresponding to 14.3% pixels in the display
window.

A contour stimulus was produced by using Photo-
shop to mark all of the luminance discontinuities in a
silhouette stimulus by lines with width of one pixel. As
was the case for the silhouettes, a darker gray for the
bounding contour (foreground) and a brighter gray for
the background were used to generate the contour
stimulus and the other two types of stimuli. The
average number of foreground pixels per frame in a
contour stimulus was 566, corresponding to 2.6% pixels
in the display window.

A point light stimulus was generated based on
orthogonal projections of the known three-dimensional
coordinates of 13 joints: head, left/right shoulder, left/
right elbow, left/right hand, left/right thigh, left/right
knee, and left/right foot. Each point light (foreground)

Figure 1. Illustration of four stimulus renderings: contour, point

light, silhouette, and skeleton walker, each in a static frame.
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was displayed as a square with the size of 5 3 5 pixels
(0.148 3 0.148). A total of 13 point lights were displayed
in dark gray against a background of brighter gray.
The average number of foreground pixels per frame
was 271, corresponding to 1.3% pixels in the display
window.

A skeleton stimulus was produced by connecting two
joints in accord with the human body hierarchy. The
line width of the skeleton stimulus was the same as in
the contour stimulus, one pixel wide. The average
number of foreground pixels per frame was 258,
corresponding to 1.2% pixels in the display window.

Dynamic Gaussian luminance noise fields were
generated independently in spatial and temporal
dimensions (see Figure 2). Noise fields sampled from a
Gaussian distribution of zero intensity and r standard
deviation were superimposed on each pixel in target
frames. Two noise levels were used with SD of 3.59 and
12.10 cd/m2 for practice and experimental tests,
respectively. The two noise levels resulted in noise
spectral density of 1.04 and 16.60 lðdeg2 secÞ or
10�6 deg2 sec, respectively.

Procedure

Prior to testing, participants were presented with
four types of walking stimuli in the absence of
luminance noise for six walking cycles. Participants
were informed that these four types of stimuli were
generated from the same movement of a person.
Participants then received a practice session with the
target walker in the absence of luminance noise. The
four types of stimuli were presented at three frame
rates: 133 ms/frame, 266 ms/frame, and 399 ms/frame.
The practice session consisted of 24 trials (four
rendering conditions, three frame rates, presence/
absence of the walker in Experiment 1 or two walking
directions in Experiment 2 with feedback based on the
appropriate judgment (detection in Experiment 1,
discrimination in Experiment 2).

One experimental run consisted of four sessions,
each including one rendering condition. The session

sequence was counterbalanced between participants.
Each session consisted of two blocks: 12 trials in a
practice block with feedback and 300 trials in the
experimental block without feedback. The trials in the
practice block were easy with low noise background
(spectral density 1.04 lðdeg2 secÞ) and three levels of
target luminance (0.00, 7.55, and 15.10 cd/m2, four
trials each), showing high-contrast stimuli. If a
participant made more than a single error, an
additional 12 practice trials were added. Between trials,
participants were presented a uniform gray display of
46.50 cd/m2, equal to the mean luminance of the noisy
background. In the subsequent experimental block with
the same rendering type, noise fields had high spectral
density [16.60 lðdeg2 secÞ]. An adaptive psychophysical
staircase procedure, QUEST (Watson & Pelli, 1983),
was used to adjust contrasts of the target walker to
yield 75% accuracy. The next trial started 1 s after the
participant made a response by pressing a key.

Experiment 1: Detection of
biological motion

Method

Rightward-walking targets embedded in luminance
noise were displayed on half of the trials, and only
luminance noise fields were presented in the other half.
Before the experiment started, participants were in-
formed that the walking direction of targets was always
toward the right. Participants were asked to detect the
human walker and to respond by pressing one button
indicating ‘‘present’’ and another indicating ‘‘absent.’’

Six undergraduate students at the University of
California, Los Angeles (UCLA) participated in
Experiment 1 for course credit and in accordance with
the Helsinki Declaration.

IO simulation

The IO analysis is presented in the Appendix. The
rightward-walking targets were known to the IO, but the
display location on each trial was unknown. The IO
consequently considered all possible locations, summing
over them by treating the target location as a hidden
variable. Spatial uncertainty only affected the formula-
tion of the likelihood when a target was present, not the
decision rule nor the likelihood when a target was absent
(see Equations 3 and 4 in the Appendix).

Figure 2. Illustration of a static frame in each of the noisy

stimulus renderings: contour, point light, silhouette, and

skeleton.
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Results for human observers and the IO

Contrast thresholds at 75% correct for human
observers were compared across four types of ren-
dering conditions. Lower contrast thresholds of
targets indicate better detection performance. Human
results, depicted in Figure 3A, indicated that the best
detection performance was obtained in the silhouette

condition (M¼ 0.010 deg2 sec, SD¼ 0.0042), followed
by point light (M ¼ 0.018, SD ¼ 0.0025) and skeleton
(M ¼ 0.020, SD ¼ 0.0045) conditions with the worst
performance in the contour condition (M¼ 0.036, SD
¼ 0.0097). All pairwise comparisons were significant
after Bonferroni adjustment for multiple comparisons
(p , 0.05) except the contrast between point lights and
skeleton.

Figure 3. Contrast thresholds at 75% correct for (A) human observers and (B) the IO in the detection task (Experiment 1). Error bars

indicate one SEM.
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Figure 3B shows IO performance for each condition
(M ¼ 161.19, 145.18, 48.13, 162.97 ldeg2 sec for
contour, point light, silhouette, and skeleton, respec-
tively). Based on this ‘‘information meter,’’ the IO
simulation clearly showed that silhouettes (which
yielded the lowest ideal contrast threshold) provided
more information for detecting the walker than did the
other three conditions.

As a quantitative measure of how efficiently the
human visual system used the input information in the
four rendering conditions, we computed detection
efficiency: the ratio of signal energy threshold for the
IO and human observers to perform the same detection
task. As shown in Figure 4, efficiency of detecting the
target walker was higher for point light (M¼ 0.82% 6
SD¼ 0.23%) and skeleton displays (0.86% 6 0.17%)
than for contour (0.46% 6 0.09%) and silhouette
displays (0.50% 6 0.13%). A Bonferroni multiple
comparison test revealed significant differences in
human detection efficiency for contour versus point
lights, contour versus skeleton, point lights versus
silhouette, and point lights versus skeleton, t(5) . 2.5, p
, 0.02, d . 1.6 for all comparisons. No significant
difference was obtained between point light and
skeleton displays, t(5)¼ 0.29, p ¼ 0.78, d ¼ 0.19, or
between contour and silhouette displays, t(5)¼0.82, p¼
0.45, d ¼ 0.43.

The efficiency measures thus revealed a very
important result. Although the skeleton contained the
least information of the four stimulus types (based on
the mean threshold of the IO) and therefore may not

afford the greatest overall performance, the skeleton
display nonetheless was processed most efficiently by
the human visual system as shown in Figure 4. A
similar result was also found for the point light display
in the detection task.

In comparison, the efficiency for the silhouette was
not very high. It seems that although the IO used every
available signal pixel in the stimulus for detecting
actions, human participants could not use all the signal
pixels within the silhouette. In other words, there might
be too many signal pixels for humans to effectively use.

A very interesting result is that the point lights had
an efficiency nearly as high as the skeleton. Given that
the statistical efficiency had already taken into consid-
eration the objectively available stimulus information,
this relatively high efficiency could reflect the infor-
mation encoded in the human internal representation
for detection. This result could not have been obtained
without comparing across these display types.

Discussion

It may be helpful to provide intuitive explanations
regarding the IO performance shown in Figure 3B.
Recall that because the IO did not know the precise
location of the walker in each trial, it had to consider
all possible positions and integrate them to calculate
the likelihood. It did know that the walker would be
always upright. The IO’s template matching from one
position to the next was a translational motion. In light

Figure 4. Human detection efficiencies in the detection task (Experiment 1) with four rendering conditions: contour, point light,

silhouette, and skeleton.
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of this fact, it is not surprising that the silhouette gave
rise to the lowest threshold. In other words, it was the
easiest to detect. This is because, when the IO’s
template moved away from perfectly matching the
walker’s position, there was still partial overlap
between the template and the silhouette walker.
Therefore, these large overlaps still contributed mean-
ingfully to increase the likelihood in the presence of the
target walker. The larger the object area is, as in the
case of the silhouette, the greater the overall likelihood
will be because there are many partial matches.

Along the same lines, we can also qualitatively
reason why the point lights and skeleton showed
comparable thresholds for the IO. In the case of the
point lights, because each point had the size of 5 3 5
pixels, there was still partial overlap between the
template and the stimulus so long as the template
translated within this window of 535 pixels around the
position of the perfect match. Likewise, in the case of
the skeleton, because the lines connecting the joints
were straight, these lines also entailed partial transla-
tional invariance. In other words, when the template
moved along the orientation of one of the lines from
the perfect matching position, there would be still
partial overlap. In comparison with the silhouette, the
point lights and skeleton stimuli yielded higher
thresholds (i.e., poorer performance) because the
overlap areas for the point lights and skeleton were
smaller than those for the silhouette.

Once these three cases are understood qualitatively,
it is easier to understand the case of the contour. To
reiterate, the likelihood term depends on two factors:
the target area and configuration. If the configuration is
partially translation-invariant, an offset from the
perfect match still contributes meaningfully to the
likelihood calculation. Because the contour was mostly
curved and one pixel in width, it had little translational
invariance. Accordingly, when the template and the
stimulus did not perfectly match, the overlap would be
small. That is why the contour’s threshold for the IO
was comparable with those of the point light and
skeleton even though the contour’s area was about
twice as large.

The qualitative description above is meant to help
understand why the IO’s thresholds in the four
renderings depend on both the area and the configu-
ration of an object. These four thresholds shown in
Figure 3B were obtained from the IO computation and
not human behavior. The important point to emphasize
is that by the nature of an object’s area and
configuration, by the nature of the noise generation,
and by the spatial uncertainty defined in this task (in
which the IO must consider all possible positions but
not orientations of an object), different stimulus
renderings encode different amounts of visual signal
and thus give rise to different detection thresholds.

Understanding the IO thresholds should help interpret
human detection thresholds, and the corresponding
statistical efficiencies.

Experiment 2: Discrimination of
biological motion

Method

Two side views (08 and 1808) were used to generate
leftward-walking and rightward-walking sequences. On
each trial, either leftward or rightward walking was
randomly selected with equal probability. The target
sequence was embedded in dynamic luminance noise as
in Experiment 1. The participants were asked to
discriminate the walking direction of the nonrigid
motion pattern of the walker. The design and
procedure were otherwise the same as in Experiment 1.

Participants were asked to identify the target as
‘‘leftward walking’’ or ‘‘rightward walking’’ by pressing
one of two buttons. We recruited six UCLA under-
graduate students who had not participated in the other
experiment. They were given course credit for their
participation in the study.

IO simulation

The IO simulation (see Appendix) was based on
Equations 5 and 6, which sum over all possible spatial
locations of the target as a hidden variable. Spatial
uncertainty affects the formulation of likelihoods for
both the left- and the right-walking targets. The IO
used the decision rule specified in Equation 7 to make a
discrimination response.

Results for human observers and the IO

As depicted in Figure 5A, the measure of signal
contrast threshold for human participants revealed the
best discrimination performance in the silhouette
condition (M ¼ 0.02 6 SD ¼ 0.008), the worst
performance in the contour (0.048 6 0.006) and point
light conditions (0.045 6 0.016), and intermediate
performance in the skeleton condition (0.027 6 0.006).
All pairwise comparisons were significant after Bon-
ferroni adjustment for multiple comparisons (p , 0.04)
except the comparisons between contour versus point
lights and silhouette versus skeleton.

For comparison, Figure 5B displays the corre-
sponding IO performance for each condition, providing
a measure of the amount of information embedded in
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each display for the task of walking direction discrim-
ination. The IO performance showed that the greatest
amount of information was provided in the silhouette
display as revealed by the lowest signal energy
threshold whereas the least information was provided
in the skeleton display. One intuitive explanation is that
silhouette display provided a large number of non-

overlapping pixels between leftward and rightward
walkers so that the visual cues entailed more discrim-
inative information between the two templates. On the
other hand, the skeleton display may share propor-
tionally more pixels between the two walkers with the
opposite-facing directions (e.g., the head pixels, the
torso pixels were very close between the two templates).

Figure 5. Contrast thresholds at 75% correct for (A) human observers and (B) the IO in the discrimination task (Experiment 2). Error

bars indicate one SEM.
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Hence more ambiguous information was included in
the skeleton display, which resulted in worse perfor-
mance.

Note that the ideal thresholds for point lights and
silhouette were similar, consistent with the comparable
finding in a discrimination task reported by Gold et al.
(2008). However, we found a slightly higher threshold
for the point lights than for the silhouette whereas Gold
et al. found the same threshold for the two displays.
This small discrepancy was likely due to the difference
in the number of frames in the walking sequence (we
used 10 frames whereas Gold et al. used 20 frames). In
addition, the present study used a larger human figure
and a smaller location shift window.

Figure 6 depicts the efficiencies by comparing human
discrimination threshold with ideal performance. The
efficiency measures revealed that humans achieved
highest discrimination efficiency for silhouette (M ¼
1.01% 6 0.42%) and skeleton (0.94% 6 0.19%). There
was no significant difference between these two
conditions, t(5)¼ 0.32, p¼ 0.77, d¼ 0.22. A Bonferroni
multiple comparison test further confirmed that human
discrimination efficiency for skeleton was higher than
for contour and point lights, t(5) . 2, p , 0.03, d . 1.7
for all comparisons. This result revealed that the
human performance difference between silhouettes and
skeletons (see Figure 5A) was attributable to the
greater amount of information contained in the
silhouettes whereas processing efficiency within the
human visual system was comparable for these two
displays.

To combine human efficiency results from both
detection and discrimination tasks across the two
experiments, Figure 7 depicts the results of a cross-task
comparison. The silhouettes yielded discrimination
efficiency (1%) significantly higher than detection
efficiency (0.5%), t(10) ¼ 2.84, p¼ 0.02, d¼ 1.64.
Discrimination efficiency was not significantly higher
than detection efficiency for contours (0.49% vs.
0.46%), t(10) ¼ 0.72, p ¼ 0.49, d ¼ 0.42, and skeletons
(0.94% vs. 0.86%), t(10)¼ 0.76, p¼ 0.46, d¼ 0.44. Only
for point lights, discrimination efficiency (0.45%) was
significantly lower than detection efficiency (0.82%),
t(10)¼ 3.48, p , 0.01, d¼ 2.01. These results imply that
detection efficiency does not necessarily impose an
upper limit on discrimination efficiency under condi-
tions of spatial uncertainty across different rendering
conditions. This finding suggests that detection and
discrimination may use different types of features in
processing the visual information in some rendering
conditions (e.g., silhouettes).

General discussion

Using the ‘‘information meter’’ provided by the IO
analysis, we measured the efficiency with which human
observers processed each stimulus type against lumi-
nance noise to either detect the presence of a walker
(Experiment 1) or discriminate the walking direction of
the walker (Experiment 2). In both tasks, the skeleton

Figure 6. Human efficiencies in the discrimination task (Experiment 2) with four rendering conditions: contour, point light, silhouette,

and skeleton.
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display was among those that yielded the highest
processing efficiency. This finding suggests that struc-
tural information about the relative relationships of
joints, highlighted in the skeleton display, provided a
critical component of the internal representation for
biological motion. Moreover, although both contour
and skeleton displays involved line drawings, discrim-
ination efficiency was lower for contours than for
skeletons, indicating that humans were able to use
structural information more efficiently when it was
explicitly presented as joint connections in a skeleton
display. In addition, although both contour and
silhouette displays included information about the
shape of the human body, the lower discrimination
efficiency observed for contours than for silhouettes
suggests that humans may not efficiently use boundary
information about body shape in recognizing biological
motion.

The skeleton display was the only stimulus that
yielded the superior efficiency among the four display
types in both detection and discrimination tasks. Note
that the silhouette displays also yielded the highest
efficiency in the discrimination task but not in the
detection task. This superior efficiency for processing
skeleton stimuli across two different tasks suggests that
the structural information about relative limb connec-
tions provided by the skeleton displays was especially
important for the internal representation that humans
used for biological motion perception. The importance
of structural processing in biological motion perception
has been supported by previous studies using different

experimental manipulations, such as body orientation
(Sumi, 1984), body subparts (Pinto & Shiffrar, 1999),
stimuli shown across apertures (Lu, 2010), and
scrambled biological motion stimuli (Thurman & Lu,
2013b). Neuroimaging studies have also provided
evidence to support complementary but dissociable
neural mechanisms underlying structural processing
and motion processing in perception of bodily move-
ments (Vangeneugden, Peelen, Tadin, & Battelli, 2014).
The IO analysis in the present study provides further
converging evidence, highlighting the important role of
efficient structural processing or form processing in
biological motion detection and recognition.

We also found that, when the location of the target
display varied randomly on each trial, discrimination
efficiency for the silhouette was significantly greater
than detection efficiency. This finding indicates that
location-invariant recognition of biological motion for
some types of renderings may involve different types of
features than those used in detection. However,
efficiency in discriminating point light stimuli remained
lower than detection efficiency, which was consistent
with the hypothesis that, for this type of rendering,
discrimination may indeed be constrained by efficiency
of detecting local features, such as individual point
lights.

Was the pattern of results across the rendering
conditions dependent critically on the spatial jitter used
in the experiments? To address this question, we ran
additional simulations to examine the impact of the
jitter range on the IO performance using a range of

Figure 7. A comparison of human detection efficiency (gray bars, Experiment 1) and discrimination efficiency (white bars, Experiment

2) with the four rendering conditions.
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jitter sizes: 63 4, 123 8, 183 12, 243 16, and 303 20
pixels (which was the largest possible jitter range in the
current setup for the display window). We found that
the relative IO performance across the four rendering
conditions remained similar across all five jitter ranges.
For example, in the detection task, the lowest threshold
obtained was for the silhouette condition, followed by
the point light. The highest thresholds were obtained
for the contour and skeleton conditions. In the
discrimination task, the point light and silhouette
conditions consistently showed lower thresholds than
the contour and skeleton conditions across the tested
jitter range. Given that similar trends were maintained
across a range of spatial jitters, the results regarding
relative efficiency found in the present study were likely
generalizable to other spatial jitters.

A pervasive finding that may seem surprising, given
the common assumption that the human visual system
readily perceives point light displays (Johansson, 1973)
is that in absolute terms human efficiencies in detecting
and discriminating biological motion were quite low
(less than 2%). The present results confirmed the similar
low efficiency level reported by Gold et al. (2008) for
discrimination of walking direction with point light and
silhouette and extended the generality of their finding
to two additional types of renderings and to detection
as well as discrimination. It should be noted that in
another IO analysis of gender recognition from human
walking actions, Pollick, Kay, Heim, and Stringer
(2005) obtained much higher efficiency estimates (26%–
48%) on the basis of a single critical cue (shoulder
width relative to hip width). The apparent discrepancy
between the efficiency estimates obtained by Pollick et
al. (2005) versus Gold et al. (2008) is attributable to
their use of different tasks, different types of noise, and,
most importantly, different IO models. In particular,
Pollick et al. (2005) used constrained IO (Geisler, 2002;
Liu, Knill, & Kersten, 1995), in which other potentially
informative cues (e.g., lateral body sway) were ignored
in the model. In contrast, the study by Gold et al.
(2008) and the present study used an unconstrained IO,
considering all stimulus information in the visual
inputs.

IO analysis has been widely employed in studies of
low-level vision, such as contrast discrimination (Ker-
sten, 1987; Legge, Kersten, & Burgess, 1987), detection
of dot density (Barlow, 1978), detection of mirror
symmetry in random dots (Barlow & Reeves, 1979),
and discrimination of coherent motion (Barlow &
Tripathy, 1997; Lu & Yuille, 2006), and tasks involving
high-level vision, including object recognition (Liu,
Kersten, & Knill, 1999; Liu et al., 1995; Tjan et al.,
1995), word recognition (Pelli, Farell, & Moore, 2003),
face recognition (Gold, Bennett, & Sekuler, 1999), and
action recognition (Gold et al., 2008; Pollick, Lestou,
Ryu, & Cho, 2002). This rich body of work makes it

possible to compare human efficiency for higher-level
visual tasks with human efficiency for lower-level tasks
observed in previous studies, such as recognition of a
simple shape (e.g., a circular disk; Legge et al., 1987),
recognition of letters and words (Burns & Pelli, 1992),
and recognition of rigid objects (Tjan et al., 1995). The
present study found low efficiencies for processing
biological motion (less than 2%), which contrasts with
the higher values reported for tasks involving simpler
static stimuli. For example, efficiency has been found to
be 3%;8% for recognizing rigid objects under spatial
uncertainty (Tjan et al., 1995), 1%;10% for recogniz-
ing words with 2;10 letters (Pelli et al., 2003),
12%;20% for recognizing unfiltered letters (Burns &
Pelli, 1992), 14% for contrast discrimination of small
disks (Legge et al., 1987), and 42% for recognizing
spatially filtered letters (Parish & Sperling, 1991).

These variations in efficiency levels across stimulus
types follow the general trend that efficiency declines as
the level of visual processing increases (e.g., from
recognizing spatially filtered letters to discrimination of
biological motion). This trend may seem counterintu-
itive, given that the human visual system appears to be
adept and robust at recognizing complex objects and
analyzing visual scenes. However, the trend may in fact
be indicative of a general trade-off between efficiency of
processing highly specific visual inputs versus adap-
tively processing diverse proximal stimuli that corre-
spond to important classes of distal stimuli in the
environment. For example, in the real world, humans
need to achieve invariant object recognition under
varied viewing conditions (e.g., changes in lighting,
viewpoint, location, and articulation). Similarly, hu-
mans need to recognize actions, such as walking, across
multiple individuals who vary in body shape as well as
across variations in kinematics, gait, and viewing angle.
In the present experiments, by contrast, a single human
walker was employed as the stimulus, and efficiency
was computed on the basis of the IO that had available
a specific template of this individual walker.

One intriguing comparison of efficiency across
various types of stimuli is that recognition efficiency for
biological motion appears to be similar to efficiency of
recognizing words consisting of 10;16 letters (Pelli et
al., 2003): Both are less than 1%. It is possible that
recognizing biological motion based on 11 joints yields
a degree of relational processing comparable to the
number of perceptual relationships involved in recog-
nizing words with 10;16 letters. One direction for
future work is to use statistical efficiency measures to
investigate relational representations of objects by
focusing on relationships between features rather than
on individual features or holistic templates.

More broadly, the results of the present study
encourage further applications of formal Bayesian
analyses of information content in stimuli and of
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human processing efficiency to complex dynamic
displays depicting human action. Future work should
aim to apply similar methods to understand how
humans perceive less familiar patterns of biological
motion, such as those involving dance and gymnastics,
and motions that vary along dimensions, such as object
size and temporal uncertainty, and social interactions.

Keywords: biological motion, human efficiency, ideal
observer, detection/discrimination

Acknowledgments

We dedicate this paper to the memory of our co-
author Dr. Bosco S. Tjan, whose brilliance, insight, and
generosity made this project possible. This work was
supported by NSF BCS-1353391 to HL and BCS-
0617628 to ZL.

Commercial relationships: none.
Corresponding author: Hongjing Lu.
Email: hongjing@ucla.edu.
Address: Department of Psychology, University of
California, Los Angeles, Los Angeles, CA, USA.

References

Abbey, C. K., & Eckstein, M. P. (2006). Classification
images for detection, contrast discrimination, and
identification tasks with a common ideal observer.
Journal of Vision, 6(4):4, 335–355, doi:10.1167/6.4.
4. [PubMed] [Article]

Ahlstrom, V., Blake, R., & Ahlstrom, U. (1997).
Perception of biological motion. Perception, 26(12),
1539–1548.

Barlow, H. (1978). The efficiency of detecting changes
of density in random dot patterns. Vision Research,
18(6), 637–650.

Barlow, H., & Reeves, B. C. (1979). The versatility and
absolute efficiency of detecting mirror symmetry in
random dot displays. Vision Research, 19(7), 783–
793.

Barlow, H., & Tripathy, S. P. (1997). Correspondence
noise and signal pooling in the detection of
coherent visual motion. Journal of Neuroscience,
17(20), 7954–7966.

Bellefeuille, A., & Faubert, J. (1998). Independence of
contour and biological-motion cues for motion-
defined animal shapes. Perception, 27(2), 225–235.

Bertenthal, B. I., & Pinto, J. (1994). Global processing

of biological motions. Psychological Science, 5(4),
221–225.

Blake, A., & Isard, M. (1998). Active contours: The
application of techniques from graphics, vision,
control theory and statistics to visual tracking of
shapes in motion. London: Springer-Verlag.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10(4), 433–436.

Burns, C. W., & Pelli, D. G. (1992). Recognition of
letters and words in noise. Ophthalmic and Physi-
ological Optics, 12(1), 84–85.

Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing
friends by their walk: Gait perception without
familiarity cues. Bulletin of the Psychonomic Soci-
ety, 9(5), 353–356.

Feldman, J., & Singh, M. (2006). Bayesian estimation
of the shape skeleton. Proceedings of the National
Academy of Sciences, USA, 103(47), 18014–18019,
doi:10.1073/pnas.0608811103.

Fisher, R. A. (1925, July). Theory of statistical
estimation. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 22(5), 700–725.

Geisler, W. S. (2002). Ideal observer analysis. In L.
Chalupa & J. Werner (Eds.), The visual neurosci-
ences (pp. 825–837). Boston: MIT Press.

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999).
Identification of band-pass filtered letters and faces
by human and ideal observers. Vision Research,
39(21), 3537–3560.

Gold, J., Tadin, D., Cook, S. C., & Blake, R. (2008).
The efficiency of biological motion perception.
Perception & Psychophysics, 70(1), 88–95.

Green, D. M., & Swets, J. A. (1966). Signal detection
theory and psychophysics. New York: Wiley.

Johansson, G. (1973). Visual perception of biological
motion and a model for its analysis. Perception &
Psychophysics, 14, 210–211.

Kersten, D. (1987). Statistical efficiency for the
detection of visual noise. Vision Research, 27(6),
1029–1040.

Legge, G. E., Kersten, D., & Burgess, A. E. (1987).
Contrast discrimination in noise. Journal of the
Optical Society of America A, 4(2), 391–404.

Liu, Z., Kersten, D., & Knill, D. C. (1999). Dissociat-
ing stimulus information from internal representa-
tion—A case study in object recognition. Vision
Research, 39(3), 603–612.

Liu, Z., Knill, D. C., & Kersten, D. (1995). Object
classification for human and ideal observers. Vision
Research, 35(4), 549–568.

Lu, H. (2010). Structural processing in biological

Journal of Vision (2017) 17(6):4, 1–14 Lu, Tjan, & Liu 12

Downloaded from jov.arvojournals.org on 03/30/2021

mailto:hongjing@ucla.edu
http://dx.doi.org/10.1167/6.4.4
http://dx.doi.org/10.1167/6.4.4
https://www.ncbi.nlm.nih.gov/pubmed/16889473
http://jov.arvojournals.org/article.aspx?articleid=2192935
http://dx.doi.org/10.1073/pnas.0608811103


motion perception. Journal of Vision, 10(12):13, 1–
13, doi:10.1167/10.12.13. [PubMed] [Article]

Lu, H., & Yuille, A. L. (2006). Ideal observers for
detecting motion: Correspondence noise. Advances
in Neural Information Processing Systems, 18, 827–
834.

Neri, P. (2009). Wholes and subparts in visual
processing of human agency. Proceedings of the
Royal Society of London B: Biological Sciences,
276(1658), 861–869.

Neri, P., & Heeger, D. J. (2002). Spatiotemporal
mechanisms for detecting and identifying image
features in human vision. Nature Neuroscience,
5(8), 812–816.

Neri, P., Morrone, M. C., & Burr, D. C. (1998, Oct 29).
Seeing biological motion. Nature, 395(6705), 894–
896.

Parish, D. H., & Sperling, G. (1991). Object spatial
frequencies, retinal spatial frequencies, noise, and
the efficiency of letter discrimination. Vision
Research, 31(7), 1399–1415.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10(4), 437–442.

Pelli, D. G., Farell, B., & Moore, D. C. (2003, June 12).
The remarkable inefficiency of word recognition.
Nature, 423(6941), 752–756.

Pinto, J., & Shiffrar, M. (1999). Subconfigurations of
the human form in the perception of biological
motion displays. Acta Psychologica (Amsterdam),
102(2–3), 293–318.

Pollick, F. E., Kay, J. W., Heim, K., & Stringer, R.
(2005). Gender recognition from pointlight walk-
ers. Journal of Experimental Psychology: Human
Perception and Performance, 31(6), 1247–1265, doi:
10.1037/0096-1523.31.6.1247.

Pollick, F. E., Lestou, V., Ryu, J., & Cho, S.-B. (2002).
Estimating the efficiency of recognizing gender and
affect from biological motion. Vision Research,
42(20), 2345–2355.

Shiffrar, M., Lichtey, L., & Heptulla Chatterjee, S.
(1997). The perception of biological motion across
apertures. Perception & Psychophysics, 59(1), 51–
59.

Sumi, S. (1984). Upside-down presentation of the
Johansson moving light-spot pattern. Perception,
13(3), 283–286.

Swets, J. A. (1964). Signal detection and recognition in
human observers: Contemporary readings. New
York: John Wiley and Sons.

Tanner, W. P., Jr., & Birdsall, T. G. (1958). Definitions
of d0 and g as psychological measures. The Journal

of the Acoustical Society of America, 30(10), 9227–
928.

Thompson, B., Hansen, B. C., Hess, R. F., & Troje, N.
F. (2007). Peripheral vision: Good for biological
motion, bad for signal noise segregation? Journal of
Vision, 7(10):12, 1–17, doi:10.1167/7.10.12.
[PubMed] [Article]

Thurman, S. M., & Lu, H. (2013a). Complex interac-
tions between spatial, orientation, and motion cues
for biological motion perception across visual
space. Journal of Vision, 13(2):8, 1–18, doi:10.1167/
13.2.8. [PubMed] [Article]

Thurman, S. M., & Lu, H. (2013b). Physical and
biological constraints govern perceived animacy of
scrambled human forms. Psychological Science,
24(7), 1133–1141, doi:10.1177/0956797612467212.

Tjan, B. S., Braje, W. L., Legge, G. E., & Kersten, D.
(1995). Human efficiency for recognizing 3-D
objects in luminance noise. Vision Research, 35(21),
3053–3069.

Watson, A. B., & Pelli, D. G. (1983). QUEST: A
Bayesian adaptive psychometric method. Percep-
tion & Psychophysics, 33(2), 113–120.

Vangeneugden, J., Peelen, M. V., Tadin, D., & Battelli,
L. (2014). Distinct neural mechanisms for body
form and body motion discriminations. Journal of
Neuroscience, 34(2), 574–585.

van Boxtel, J. J., & Lu, H. (2011). Visual search by
action category. Journal of Vision, 11(7):19, 1–14,
doi:10.1167/11.7.19. [PubMed] [Article]

Appendix: IO analysis

All targets were assumed to be known to the ideal
observer. The frame rate of the movies were also
assumed to be known. A target was represented by
dynamic templates fTig, corresponding to the noise-
free image frames of the target, in which i ¼ 1; . . . ; n.
Each frame had the same image size, consisting of M
pixels. Given a motion sequence of n image framesfIig,
the probability of a target fTig being present can be
expressed using Bayes rule:

PðfTigjfIigÞ ¼
PðfIigjfTigÞPðfTigÞ

PðfIigÞ
: ð1Þ

Detection

Given an observed sequencefIig, detection amount-
ed to deciding between the following two hypotheses:
Hypothesis 1 (T): The target was present in fIig, and
Hypothesis 2 (N): The target was absent in fIig.
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If PðTjfIigÞ.PðNjfIigÞ, the target (a walker) was
judged to be present. If PðTjfIigÞ,PðNjfIigÞ, the
target was judged to be absent. The ratio of two
posterior probabilities is

PðTjfIigÞ
PðNjfIigÞ

¼ PðfIigjTÞ
PðfIigjNÞ

� PðTÞ
PðNÞ : ð2Þ

Because the rightward-walking target was present in

half the trials and absent in the other half, the prior

probabilities were equal, PðTÞ
PðNÞ ¼ 1. As a result, the

optimal decision was determined by the likelihood

ratio, PðfIigjTÞ
PðfIigjNÞ. The likelihood term PðfIigjTÞ quantified

how likely a given image sequence fIig was generated
by adding Gaussian noise on a target (walker) template

T. PðfIigjNÞ quantified the probability that fIig was
generated by adding Gaussian noise on a uniform

background image, B.
Due to the spatial uncertainty, the IO simulation

summed over all possible spatial locations, with s
denoting that the center position of the walker was
located within a certain window w. The display location
s was randomly sampled according to a uniform
distribution, yielding PðsÞ ¼ 1

wxwy
, wx and wy denote the

size of the window w.

PðfIigjTÞ ¼
X
s2w

PðsÞPðfIigjfTig; sÞ

¼
X
s2w

PðsÞ
Yn
i¼1

1

ð
ffiffiffiffiffiffi
2p
p

rÞM
exp �

Ii � Ti;s

�� ��2
2r2

 !
;

ð3Þ
where Ti;s denotes that the template target is located at the
location s.

The likelihood term PðfIigjNÞ quantified how likely
a given image sequence fIig was observed from a noise
background, N.

PðfIigjNÞ ¼ PðfIigjfNigÞ

¼
Yn
i¼1

1

ð
ffiffiffiffiffiffi
2p
p

rÞM
exp � Ii �Nik k2

2r2

 !
:

ð4Þ

Discrimination

Given a walking sequence fIig, discrimination
amounted to deciding between the two alternative
hypotheses: Hypothesis 1 (R): rightward walking, and
Hypothesis 2 (L): leftward walking. If
PðRjfIigÞ.PðLjfIigÞ, then the walking direction was
identified as toward the right and otherwise toward the

left. The ratio of the two posterior probabilities was

equal to the likelihood ratio, PðfIigjRÞ
PðfIigjLÞ because the

walking direction was toward the left in half of the

trials and the right in the other half. The calculation of
the likelihood term PðfIigjRÞ and PðfIigjLÞ amounted
to comparing the image sequence fIig with stored
template sequences fTi

Rg and fTi
Lg, respectively

representing rightward and leftward walking.
The stimulus contained a target walker, perturbed by

the addition of spatially and temporally independent
Gaussian luminance noise with 0 mean contrast and
standard deviation r. The ideal observer simulation
summed over all possible spatial locations in which the
target could appear,

PðfIigjRÞ ¼
X
s2w

PðsÞ
YN
i¼1

PðIijTi
R; sÞ

¼
X
s2w

PðsÞ
YN
i¼1

1

ð
ffiffiffiffiffiffi
2p
p

rÞM
exp �

Ii � Ti;s
R

�� ��2
2r2

 !
;

ð5Þ

PðfIigjLÞ ¼
X
s2w

PðsÞ
YN
i¼1

PðIijTi
L; sÞ

¼
X
s2w

PðsÞ
YN
i¼1

1

ð
ffiffiffiffiffiffi
2p
p

rÞM
exp �

Ii � Ti;s
L

�� ��2
2r2

 !
:

ð6Þ

The IO used the following decision rule to make a
response:

if PðfIigjRÞ
PðfIigjLÞ.1; decide rightward walking

if PðfIigjRÞ
PðfIigjLÞ, 1; decide leftward walking

(
:

ð7Þ

Definition of efficiency

Statistical efficiency (Fisher, 1925; Swets, 1964) is
typically defined as the squared ratio of d0s for the IO
and human observers:

g ¼ d 0
Human

d 0
Ideal

� �2

; ð8Þ

where human and ideal sensitivity d0 are measured on
stimuli with the same signal contrast at a given noise
level. Because sensitivity d0 is proportional to the
square root of the signal contrast energy, efficiency is
also defined as the ratio of signal energy threshold Et

for IOs and human observers to perform a task at a
given level of performance (Tanner & Birdsall, 1958).
In the present study, we used Equation 9 to compute
human efficiency in different tasks:

g ¼ Et;Ideal

Et;Human
: ð9Þ
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