
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Impact of Semantic Representations on Analogical Mapping with Transitive Relations

Permalink
https://escholarship.org/uc/item/0m8232qg

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Linford, Bryce
Ichien, Nicholas
Holyoak, Keith
et al.

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m8232qg
https://escholarship.org/uc/item/0m8232qg#author
https://escholarship.org
http://www.cdlib.org/


Impact of Semantic Representations on Analogical Mapping 

with Transitive Relations 

Bryce Linford (linford@g.ucla.edu) 

Nicholas Ichien (ichien@ucla.edu) 

Keith J. Holyoak (holyoak@lifesci.ucla.edu)  

Hongjing Lu (hongjing@ucla.edu)  
Department of Psychology, University of California, Los Angeles 

Los Angeles, CA 90095 USA    

 

 
Abstract 

Analogy problems involving multiple ordered relations of the 
same type create mapping ambiguity, requiring some 
mechanism for relational integration to achieve mapping 
accuracy. We address the question of whether the integration 
of ordered relations depends on their logical form alone, or on 
semantic representations that differ across relation types. We 
developed a triplet mapping task that provides a basic paradigm 
to investigate analogical reasoning with simple relational 
structures. Experimental results showed that mapping 
performance differed across orderings based on category, 
linear order, and causal relations, providing evidence that each 
transitive relation has its own semantic representation. Hence,  
human analogical mapping of ordered relations does not 
depend solely on their formal property of transitivity. Instead, 
human ability to solve mapping problems by integrating 
relations relies on the semantics of relation representations.  
We also compared human performance to the performance of 
several vector-based computational models of analogy. These 
models performed above chance but fell short of human 
performance for some relations, highlighting the need for 
further model development.    

Keywords: analogy; mapping; embeddings; transitive 
inference  

Introduction 

The solution of verbal analogy problems (e.g., tool : 

hammer :: flower : rose)  is a longstanding focus of work in 

psychology and educational testing (e.g., Sternberg & Nigro, 

1980). More recently, computational models that can solve 

verbal analogies based on representations of word meanings 

have been developed both in artificial intelligence (AI) (e.g., 

Mikolov et al., 2017; Turney, 2013) and cognitive science 

(Lu, Wu, & Holyoak, 2019). A core problem that these 

computational models must address is the eduction of 

relations (Spearman, 1923): retrieving or computing the 

unstated semantic relation between the two words in each pair 

(e.g., the relation between the source pair tool and hammer, 

and that between the target pair flower and rose). A general 

solution is to make use of vector representations 

(embeddings) that capture important aspects of the meanings 

of individual words, generated by machine learning models 

such as Word2vec (Mikolov et al., 2017), which are trained 

on large text corpora. The relation between any two words 

can then be educed either by the generic operation of 

computing the difference vector between the paired words, or 

by additional learning mechanisms that enable generation of 

explicit representations of relations as vectors in a 

transformed relation space (Lu et al., 2019; Ichien, Lu, & 

Holyoak, 2022). Once relation vectors have been created, an 

analogy can be evaluated by assessing the similarity of the 

relation vectors for the source and target pairs (e.g., by 

computing cosine similarity). 
 Solving verbal analogies presented in the form A:B::C:D 

does not require mapping of individual concepts, because the 

format itself specifies clear correspondences (A→C, B→D). 

In order to extend vector-based computational models of 

analogy to more complex problems in which each analog 

involves multiple relations between more than two concepts 

(necessitating a mapping process), the models must be 

augmented with some mechanism to integrate multiple 

relations so as to identify the optimal mappings between 

concepts in source and target analogs. One approach is to 

organize vector representations of both concepts and the 

relations between them into attributed graphs, in which 

concepts correspond to nodes and relations to edges (Lu et 

al., 2022). Given a pair of attributed graphs, a probabilistic 

graph matching algorithm can then be applied to identify the 

optimal mappings between source and target concepts by 

maximizing graph similarity under a soft isomorphism 

constraint. 
 Lu et al. (2022) introduced a paradigm for testing the 

ability of both humans and computational models to find 

Figure 1: Time-course of an example category triplet 

problem. 
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mappings between words in analogy problems minimally 

more complex than the standard A:B::C:D format. Rather 

than each analog consisting of a single word pair, analogs are 

triplets composed of three words (see Figure 1). One type of 

problem involved category triplets, in which the source was 

an ordered set of category names (e.g., clothing : sweater : 

turtleneck), and the target consisted of three scrambled words 

(e.g., dog, animal, beagle) that could also form an ordered set 

of categories. For each problem participants were asked to 

create a valid analogy by using their mouse to drag each of 

the randomly ordered target terms under one of the terms in 

the ordered source triplet. 
 The triplet mapping problem provides a basic paradigm for 

investigating analogical reasoning using simple relational 

structures. When the source and target analogs involve 

multiple pairwise relations of the same type, as in category 

triplets, inherent mapping ambiguities arise. For example, 

animal : dog considered alone could map to either clothing : 

sweater or sweater : turtleneck, because all of these pairs 

instantiate the superordinate-of relation. Lu et al. (2022) 

found that people were able to reliably solve such triplet 

problems; a comparable requirement to integrate multiple 

relations arises in many other relational reasoning paradigms, 

such as transitive inference (Andrews & Halford, 1998; 

Waltz et al., 1999). To resolve ambiguity in local mappings, 

a reliable analogy model must assess relation similarities and 

also integrate across relations based on mapping constraints. 
 Category relations are one of several general types of 

semantic relations that exhibit the logical property of 

transitivity (i.e., for relation r, A r B and B r C jointly imply 

A r C). For any transitive relation, it is possible to form triplet 

mapping problems, the solution of which requires both 

eduction of relations between pairs of concepts and 

integration of multiple relations. An important question is 

whether the solution to mapping problems based on transitive 

relations depends solely on their logical form, or on the 

semantic representations of different relations. If the logical 

form of structures directly determines analogical mapping (as 

predicted, for example, by structure-mapping theory; 

Gentner, 1983), we would expect constant mapping 

performance regardless of semantic relations. In contrast, if 

mapping performance varies across different transitive 

relations, this would suggest that the semantics of relations 

plays an important role in analogical mapping and reasoning. 
 Here we compare human performance on triplet problems 

involving three types of transitive relations: category (e.g., 

bird : parrot : parakeet), linear order (e.g., pebble : rock : 

boulder), and causal (e.g., lightning : fire : smoke).  All of 

these relations constitute formal structures based on transitive 

relations. According to a taxonomy of forms proposed by 

Kemp and Tenenbaum (2008), for categories, the ordering is 

part of a hierarchy; for linear orders, the relation is itself an 

ordering; for causal relations, the ordering is a chain within a 

causal network (Waldmann, 2017). 
 If mapping of ordered relations depends solely on their 

formal property of transitivity, then the three relation types 

would yield mapping problems of approximately the same 

difficulty. On the other hand, if each type of transitive 

relation has its own semantic representation (as vector-based 

models of analogy assume), then mapping difficulty may 

vary across types. To explore this issue, we performed an 

experiment to determine how well people are able to solve 

triplet mapping problems based on the three types of 

transitive relations. In addition, we also compared human 

performance with several recent models of mapping based on 

vector representations of word embeddings and relations.  

Experiment: Mapping Triplets Based on 

Transitive Relations 

Method 
 

Participants A total of 561 participants (Mage = 40.85, SDage 

= 12.44, 288 female, 265 male, 6 gender non-binary, 2 gender 

withheld; located in the United States, United, Kingdom, 

Ireland, South Africa, New Zealand, Canada, and Australia) 

were recruited via Amazon Mechanical Turk and received a 

payment of $1. Of these, 27 participants reported not paying 

attention while completing the task and were therefore 

excluded from analyses, resulting in a final sample of 534. 

The study was approved by the Office of the Human 

Research Protection Program at the University of California, 

Los Angeles, and participants provided informed consent. 

The study was pre-registered online on AsPredicted and can 

be accessed at: https://aspredicted.org/B2M_28Y.       

   

Materials and Procedure Each participant completed three 

verbal analogy problems, each based on pairs of triplets 

(three words) of one of three types. The three triplet types 

instantiated three classes of semantic relations, each formally 

transitive: category member, linear order, and cause-effect. 

The triplets were primarily based on norms of word pairs 

instantiating the three relations, reported by Jurgens, 

Mohammed, Turney and Holyoak (2012); some causal word 

pairs were drawn from stimuli used in a study by Fenker, 

Waldmann, and Holyoak (2005). 
By presenting each participant with just one problem of 

 
Relation type Triplet examples 

Category 

clothing: sweater: turtleneck 

weapon: gun: rifle 

reptile: lizard: iguana 

Linear order 

second: minute: hour 

past: present: future 

penny: nickel: quarter 

Causal 

exercise: fitness: health 

nuts: allergy: rash 

salt: thirst: drink 

Table 1: Examples of Triplets used in Experiment 
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each type, we minimized any opportunity to learn the general 

structure of the problems (as our focus was on initial 

analogical mapping, rather than schema induction). For each 

problem, an ordered set of three terms (e.g., clothing : 

sweater : turtleneck) appeared in a fixed position on the top 

of the screen, and a set of three randomly ordered terms (e.g., 

dog, mammal, beagle) appeared on the left (see Figure 1). 

Participants were instructed to create a valid analogy by 

clicking and dragging each of the randomly-ordered terms to 

a box below the corresponding fixed term. Examples of each 

type are provided in Table 1.  Each problem was formed 

using two triplets randomly drawn from a pool of eight, and 

were shown in either order (56 possible pairs for each triplet 

type). The presentation order of the three triplet problems was 

counterbalanced across participants.  
Before working on the three experimental problems, 

participants read instructions that explained the triplet 

analogy task using two examples, each involving different 

relations than the experimental problems. The triplets in the 

first example were barber : scissors : hair and bandage : 

nurse : wound, and the triplets of the second example were 

finger : hand : arm and leaf : branch : tree. The instructions 

stated that an analogy is valid if the relations among the terms 

in the two triplet sets match each other. Participants needed 

to complete the second example correctly in order to begin 

the experimental problems.  

Results 
 

Human Performance Mapping responses were first coded 

as correct only if all three words were mapped correctly in a 

problem. As there are six possible orderings of three items, 

chance-level performance would be 0.17. Mean mapping 

accuracy of the participants was 0.69 for category triplets, 

0.77 for linear order triplets, and .48 for causal triplets. A one-

way repeated measures ANOVA, with triplet type (category, 

linear order, causal) as a within-subjects factor, revealed a 

significant main effect of semantic relation on mapping 

accuracy, F(2,1066) = 68.387, p < .001. Using a Bonferroni  

correction for multiple comparisons, mapping accuracy was 

reliably higher for linear order triplets than for category (p = 

.003) or causal triplets (p < .001), and accuracy was higher 

for category triplets than causal triplets (p < .001). 

We also analyzed mapping accuracy for each of the three 

individual role positions within each triplet problem. Role-

based mapping accuracy was coded as 1 if the correct target 

word was mapped to its corresponding source word, scored 

separately for each of the three words in the target triplet. The 

means are shown in Figure 2. We conducted a two-way 

ANOVA on mapping accuracy for each role, with triplet type 

and role position (word 1, 2, and 3) as within-subject factors. 

Mauchly’s test indicated a violation of the sphericity 

assumption, χ2(9) = 85.949, p < .001. Given a violation of 

sphericity (ε = 9.27), we report Huyn-Feldt corrected results. 

This analysis revealed significant main effects of triplet type, 

F(1.97, 1051.035) = 70.00, p < .001, and role position, 

F(1.94, 1034.16) = 10.40, p < .001, as well as a significant 

interaction, F(3.738, 1992.29) = 8.086, p < .001. These 

results indicate that specific semantic relations affect not only 

overall mapping accuracy, but also accuracy for individual 

roles in transitive triplets.    

To further examine the impact of semantic relations on 

mapping accuracy for individual roles, we conducted nine 

pairwise comparisons between role positions within each 

triplet type, using a Bonferroni correction for multiple 

comparisons. For category triplets, accuracy was reliably 

higher for the first role than the second (p < .01) or third (p 

< .001), with no significant difference between the second 

and third roles. For linear order triplets, accuracy for the 

second role was reliably higher than for the first (p = .001) or 

third role (p = .006), with no reliable difference between the 

first and third roles. For causal triplets, accuracy was reliably 

higher for the first role than for the second (p = .016) or third 

(p = .009), with no significant difference between the second 

and third. Thus for category and causal triplets, accuracy was 

highest for the first word; whereas for linear order triplets, 

accuracy was highest for the middle word.   

Mapping Semantic Relations with Vector-

Based Computational Models  

We implemented several vector-based models that are 

capable of computing the semantic relation between any two 

words, and then integrating multiple relations to identify the 

optimal mapping between analogs. Each model simulates 

mapping performance on each of the 56 triplet problems used 

in the human experiment. For the present simulations, 

mappings were considered correct only if all three entities in 

the target were correctly mapped to the source (chance 

performance = 0.17). 

 We tested models based on four different methods for 

creating vector representations of semantic relations. These 

methods were: two versions based on sentence embeddings 

generated by a recently-developed model for natural 

language processing (NLP), Bidirectional Encoder 

Representations from Transformers (BERT) (Devlin et al., 

2019); a version based on an earlier NLP method to create 

Figure 2: Mean mapping accuracy for words in each of 

three roles, by triplet type. Error bars reflect ± 1 SEM. 
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word embeddings, Word2vec (Mikolov et al., 2013; Zhila et 

al., 2013), and vector representations of word-pair relations 

generated by a model of relation learning, Bayesian Analogy 

with Relational Transformations (BART) (Lu et al., 2019). 

Each of these four sets of relation embeddings was used with 

an exhaustive algorithm for finding the optimal mapping 

between two triplets. In addition, two of the sets of relation 

embeddings (based on Word2vec and BART) were also 

coupled with an algorithm for Probabilistic Analogical 

Mapping (PAM) (Lu et al., 2022), which is more 

computationally efficient than the exhaustive algorithm. 

Thus, a total of six computational models were implemented 

and used to simulate human performance. 

 In exhaustive mapping, for each problem all alternative 

mappings are considered between an ordered source triplet 

(e.g., tool : ax : hatchet) and each of the six possible orderings 

for the entities in a target triplet (e.g., bird : parakeet : parrot, 

parrot : bird : parakeet, etc.). All representations are derived 

from word embeddings: high-dimensional vector 

representations of individual word meanings computed from 

hidden layers of activation in Natural Language Processing 

(NLP) models (implemented as artificial neural networks) 

that have been trained to predict word and/or sentence 

sequences within vast text corpora. For all models based on 

exhaustive mapping, the predicted correct mapping is 

obtained by selecting the one of the six possible mappings 

that minimizes cosine distance. 

 
BERT BERT is an NLP model that takes full sentences as 

input and is equipped with a transformer block, which 

enables the model to generate embeddings of individual 

words in input sentences that are context-dependent: 

sensitive to both the identity and order of other words used in 

that sentence (Devlin et al., 2019). Although it represents 

verbal input as unstructured vectors of activation, BERT 

embeddings have been used to recover structural properties   

of sentences that approximate those posited by theoretical 

linguists (Manning et al., 2020). In the present simulations, 

we examined the extent that such representations could be 

used to find correspondences across instances of transitive 

relations. 

We acquired sentence embeddings from BERT through the 

Transformer Model for MATLAB toolbox1, using the bert-

base model pre-trained on the BooksCorpus (800M words) 

(Zhu et al., 2015) and the English Wikipedia corpus (2,500M 

words) (Devlin et al., 2019). In order to represent each 

ordering of a given triplet, we used each of two methods. The 

first employed a generic sentence across all three triplet 

types, in which words representing each entity within a triplet 

were embedded in the following structure: “A is a related to 

B, which is related to C.” Within this skeletal sentence, we 

replaced the first word in an ordered triplet with A, the second 

word with B, and the third word with C (e.g., the ordering 

tool : ax : hatchet yielded “Tool is related to ax, which is 

                                                 
1 https://github.com/matlab-deep-learning/transformer-models 

related to weapon”).  

The second method for obtaining embeddings from BERT 

employed a specific sentence for each triplet type, specifying 

the particular semantic relation instantiated by that triplet: 

For category triplets: “A is a category of B, which is a 

category of C;” for linear order triplets: “A goes before B, 

which goes before C;” and for causal triplets: “A causes B, 

which causes C.” 

In order to examine BERT’s performance on analogy 

triplet problems, we adopted two methods for extracting 

representations of generic and specific sentences, spanning 

the source analog and the 6 different orders of the target 

analog for each problem. Using the first method, we 

computed the mean of the individual word embeddings 

constituting each input sentence to generate a unified 

sentence embedding. Using the second method, we simply 

extracted the embedding for the [CLS] classification token 

for each input sentence. Because the first method 

outperformed the second, we report results using the first 

method.  

 
Word2vec-diff In contrast to context-dependent word 

embeddings created by BERT, static word embeddings 

generated from earlier language models like Word2vec 

(Mikolov et al., 2013) represent individual word meanings 

using single vectors, regardless of their context of use. In 

order to compute representations of pairwise relations 

between words from Word2vec embeddings, we took a 

generic operation: the vector difference (Word2vec-diff) 

between words in each pair. This difference-vector approach 

to representing relations between individual words has been 

used to solve four-term analogy problems relating similar 

pairs of concepts (Zhila et al., 2013; but see Peterson, Chen, 

& Griffiths, 2020, for evidence of limitations). In order to 

represent the relations instantiated in a triplet A:B:C, we 

concatenated vector differences between vectors representing 

A and B as 𝒇𝑨 − 𝒇𝑩, B and C as 𝒇𝑩 − 𝒇𝑪, and A and C as 𝒇𝑨 −
𝒇𝑪, for source triplets as 𝑺 = [𝒇𝑨 − 𝒇𝑩, 𝒇𝑩 − 𝒇𝑪, 𝒇𝑨 − 𝒇𝑪]. 
Similar operations are used for the target triplet.  

  

BART BART uses supervised learning to acquire explicit 

representations of semantic relations (e.g., X is a part of Y) 

and the individual roles that constitute them (e.g., part and 

whole) from unstructured vector representations of individual 

word meanings (Lu et al., 2019, 2022). For the present 

simulations, BART was trained using Word2vec word 

embeddings for word pairs that instantiate a set of relations. 

The learning model acquires weight distributions over 

selected feature dimensions of input word vectors. These 

weight distributions are used to predict the posterior 

probability that a word pair instantiates a particular relation, 
 After relation learning, BART has acquired role-based 

weight distributions that are diagnostic of individual words 

serving the first role of a given relation (e.g., part in the 

relation X is a part of Y), which constitute explicit 
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representations of those relational roles. To do so, BART 

reapplies Bayesian logistic regression to the element-wise 

product of prior-learned relation weight distributions and 

vectors representing the first word of training example word 

pairs. BART’s learning culminates in explicit representations 

of both full semantic relations and the individual roles that 

constitute them. 
 In order to then represent the relation between any pair of 

words A:B, BART applies its learned relation weight 

distributions to generate a relation vector 𝑅𝑒𝑙𝐴𝐵 in which 

each element represents the posterior probability of the word 

pair instantiating each of  learned relations: 𝑅𝑒𝑙𝐴𝐵 =
〈𝑃(𝑅𝑒𝑙1 = 1|𝑓𝐴, 𝑓𝐵), … 𝑃(𝑅𝑒𝑙𝑘 = 1|𝑓𝐴, 𝑓𝐵)〉.  
 Ichien et al. (2022) found that applying a power 

transformation to BART’s relation vectors, raising the value 

along each dimension to a power of 5 (i.e., “winners take 

most”) improves their ability to predict human judgments of 

relational similarity. We applied that power transformation to 

relation vectors in the present simulations. 
 BART uses its learned role weight distributions to generate 

a role vector 𝑅𝑜𝑙𝑒𝐴 populated by posterior probabilities 

representing the extent that the first word  𝑓𝐴 in a given pair 

of word vectors 𝑓𝐴 and 𝑓𝐵 instantiates the corresponding 

learned role:  
𝑅𝑜𝑙𝑒𝐴 = 〈𝑃(𝑅𝑜𝑙𝑒1 = 1|𝑓𝐴, 𝑓𝐵), . . . , 𝑃(𝑅𝑜𝑙𝑒𝑘 =  1|𝑓𝐴, 𝑓𝐵)〉. 
In order to represent the full relational meaning of a given 

word pair 𝑅𝐴𝐵, we concatenated 𝑅𝑒𝑙𝐴𝐵 and 𝑅𝑜𝑙𝑒𝐴 to form the 

relation representation  𝑅𝐴𝐵 = [𝑅𝑒𝑙𝐴𝐵, 𝑅𝑜𝑙𝑒𝐴]. 
 In the present simulations, we combined two datasets of 

human-generated word pairs to train BART. The first dataset 

(Jurgens et al., 2012) consists of at least 20 word pairs (e.g., 

engine : car) instantiating each of 79 semantic relations (e.g., 

X is a part of Y). The second dataset consists of at least 10 

word pairs instantiating each of 56 additional semantic 

relations (Popov, Hristova, & Anders, 2017). Across both 

datasets, BART acquired weight distributions for 135 

semantic relations. Since BART’s learned relation weights 

can be expressed as two separate halves (i.e., those associated 

with the first relational role and those associated with the 

second relational role), BART can automatically generate 

representations of the converse of each learned relation by 

swapping the relation weights associated with each 

individual relational role. Thus, upon learning a 

representation of X is a category for Y, BART can also form 

a representation of its converse, Y is a member of category X, 

effectively doubling its pool of learned relations from 135 to 

270 in total. 

Exhaustive Mapping 

Each of the four sets of relations embeddings described above 

was paired with a mapping algorithm that performs an 

exhaustive search, comparing an ordered source triplet to all 

six possible orders of a target triplet. This exhaustive 

mapping algorithm selects mappings based on which 

ordering of the target 𝑻̂ maximizes its overall similarity with 

the ordered source 𝑺: 

𝑇̂ = argmax
𝑇∈{𝑇1,𝑇2,𝑇3,𝑇4,𝑇5,𝑇6}

1 − 𝑐𝑜𝑠 (𝑆, 𝑇)              (1) 

Probabilistic Analogical Mapping (PAM) 

The second mapping algorithm used in our simulations 

implements a graph-matching procedure that maximizes the 

similarity between two semantic relation networks, 

respectively representing the source and target analogs. 

Formally, semantic relation networks are attributed graphs in 

which each node 𝑵 and each edge 𝑬 is assigned attribute 

embeddings 𝑨. Within semantic relation networks, nodes are 

word embeddings for individual concepts and edges are 

semantic relation vectors between words. 𝑨𝒊𝒊 represents the 

semantic attribute of the 𝒊th concept, and 𝑨𝒊𝒋 indicates the 

relation attribute of the edge between the 𝒊th concept and 𝒋th 

concept.  For the present simulations with PAM, we always 

use Word2vec word embeddings for semantic attribute 𝑨𝒊𝒊 

for the nodes in the attributed graph. In one of two versions, 

for edge attributes 𝑨𝒊𝒋 we use Word2vec-diff vectors, 𝒇𝒊 −

𝒇𝒋; in the other version, we use BART vectors 𝑹𝒊𝒋. 

 We represent the source and target analogs as graphs 𝒈 and 

𝒈′ with concept indices 𝒊, 𝒋, and 𝒊′, 𝒋′, respectively. 𝑴𝒊𝒊′ = 𝟏 

if the 𝒊th concept node in the source analog maps to the 𝒊′th 

concept node in the target analog. The goal of the model is to 

estimate the probabilistic mapping matrix 𝒎, which consists 

of elements denoting the probability that the 𝒊th node in the 

source analog maps to the 𝒊′th node in the target analog, 

𝒎𝒊𝒊′ = 𝑷(𝑴𝒊𝒊′ = 𝟏). PAM adopts a Bayesian approach to 

infer a mapping 𝒎 between concepts in the source and target 

analogs that maximize its posterior probability: 

𝑃(𝑚|𝑔, 𝑔′) ∝ 𝑃(𝑔, 𝑔′|𝑚)𝑃(𝑚), 
with the constraints 

∀𝑖 ∑ 𝑚𝑖𝑖′ = 1,𝑖′ ∀𝑖′ ∑ 𝑚𝑖𝑖′ = 1𝑖              (2) 

The likelihood term 𝑃(𝑔, 𝑔′|𝑚) uses mapping probabilities 

as weights to compute likelihood probabilities based on a 

weighted sum of the semantic similarity between mapped 

concepts and of the relation similarity between mapped 

relations. The prior term favors isomorphism, with one-to-

one correspondence in graph matching.  
To implement the inference in Equation 2, we employ a 

graduated assignment algorithm (Gold & Rangarajan, 1996) 

similar to those previously used in matching problems in 

computer vision (Lu & Yuille, 2005; Menke & Yang, 2020). 

The algorithm incorporates soft assignments in graph 

matching, allowing probabilistic mapping values that lie in 

the continuous range [0,1] rather than requiring deterministic 

one-to-one mapping values. 

Comparisons between Model Predictions and 

Human Performance  

Figure 3 presents mapping accuracy of humans and each of 

the six computational models for each triplet type. For 

category triplets, BART with exhaustive search (.75) and 

with the PAM mapping algorithm (.71) achieved human-

level performance (.69). All the other models showed much 
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worse mapping accuracy for category triplet problems 

(between .23 and .41). For humans, accuracy on linear order 

triplets was the highest among the three triplet types (.77); 

however, all models performed poorly on linear order 

problems. The highest accuracy on linear order triplets was 

achieved by exhaustive BART (.52) followed by BART 

coupled with PAM (.39). The Word2vec-diff models reached 

accuracy around 0.3, and the BERT models showed chance-

level performance. For causal triplets, human performance 

was much lower than for either of the other two types (.48). 

The models performed even worse, with only BART coupled 

with PAM achieving above-chance accuracy (.29).  

Discussion 

Our results show that human performance on mapping 

problems involving transitive relations differs substantially 

between different semantic relations: most accurate for linear 

order relations, followed by category relations, and least 

accurate for causal relations. These systematic differences 

among semantic relation types imply that each type of 

transitive relation has its own semantic representation, and 

that mapping is influenced by these semantic representations, 

rather than being based solely on the formal property of 

transitivity. 

One possible explanation for the experimental results is 

that people have prior schematic knowledge about linear 

orderings based on magnitude, and such existing schemas are 

not as easily retrievable for category and causal problems. 

Future research could explore how people might improve at 

these problems by learning schemas for the semantic 

relations (e.g., by completing multiple problems; Gick & 

Holyoak, 1983).    

The differences in mapping performance across relation 

types also provide insights into how humans represent and 

map each type of semantic relation in analogical reasoning. 

In particular, the three types varied in accuracy across the 

three role positions. For category problems, the first word 

was mapped most accurately, replicating the pattern reported 

by Lu et al. (2022). This finding suggests that the most 

abstract category (superordinate) is the most distinctive of the 

three. For causal triplets, accuracy was also highest for the 

first role, consistent with evidence that the root cause in a 

causal chain is most distinctive (Ahn, Kim, Lassaline, & 

Dennis, 2000). In contrast, for linear order triplets the middle 

role was most accurate. This pattern implies that the most 

common error was a reversal of the order between the source 

and target (i.e., the first and third roles were reversed, while 

the middle role was correct because it remains the same 

regardless of the direction of the ordering).  

Vector-based models of relation representations are 

capable of educing the relation between word pairs; and when 

coupled with a mapping algorithm, such models can in 

principle compute mappings that require integration of 

multiple relations, as is required for our triplet analogies. 

However, none of the six specific models we implemented 

proved particularly impressive in capturing the pattern of 

human performance for all relations examined in the study. It 

is possible that humans adopt different representation formats 

for different types of relation representations. For example, a 

linear ordering could be identified by projecting word vectors 

onto a magnitude dimension in a semantic space (Grand et 

al., 2022). Causal relations may be represented using special 

integration functions (Yuille & Lu, 2007) and learned 

through interventions. Hence, our comparison of model and 

human performance highlights the need to develop more 

sophisticated relation representations (beyond vector-based 

models) that can support analogical reasoning. 

Figure 3: Overall mapping accuracy for models (grey bars) and human reasoners (blue bars) for category (light shade), 

linear order (middle shade), and causal (dark shade) triplet problems. For models, upper x-axis labels refer to alternative 

relation representations, and lower x-axis labels refer to alternative mapping algorithms. Dotted line marks chance 

performance (.17). Errors bars reflect ± 1 SEM.  
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