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Abstract
When viewing the actions of others, we not only see patterns of body movements, but we also "see" the intentions and social 
relations of people. Experienced forensic examiners – Closed Circuit Television (CCTV) operators – have been shown to 
convey superior performance in identifying and predicting hostile intentions from surveillance footage than novices. However, 
it remains largely unknown what visual content CCTV operators actively attend to, and whether CCTV operators develop 
different strategies for active information seeking from what novices do. Here, we conducted computational analysis for the 
gaze-centered stimuli captured by experienced CCTV operators and novices' eye movements when viewing the same surveil-
lance footage. Low-level image features were extracted by a visual saliency model, whereas object-level semantic features 
were extracted by a deep convolutional neural network (DCNN), AlexNet, from gaze-centered regions. We found that the 
looking behavior of CCTV operators differs from novices by actively attending to visual contents with different patterns of 
saliency and semantic features. Expertise in selectively utilizing informative features at different levels of visual hierarchy 
may play an important role in facilitating the efficient detection of social relationships between agents and the prediction of 
harmful intentions.

Keywords Social interaction · Visual expertise · Eye movements · Intention · Deep convolutional neural network (DCNN) · 
Saliency

Introduction

People are adept at perceiving goal-directed actions and infer-
ring intentions from human actions. Although laboratory 
research using controlled stimuli (e.g., Heider-Simmel-type ani-
mations, 1944) has shed light on the visual processing involved 
in analyzing goal-oriented activities, most work has focused on 
how low-level visual cues, such as orientation and speed, affect 
social perception (e.g., Gao et al., 2009, 2010; McAleer & Pol-
lick, 2008; Shu et al., 2018). It remains unclear how features 
extracted from different levels of the visual hierarchy influence 
social perception, and how people analyze visual contents of 
social stimuli in complex, real-world interactions.

We address these questions using real-life human 
activities recorded in videos of Closed Circuit Television 
(CCTV). The CCTV systems typically employ a set of 
cameras deployed around complex urban geography. The 
videos recorded by the cameras are routinely monitored by 
CCTV human operators in real-time to identify the presence 
of hostile intentions so as to allow a preemptive response 
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that minimizes the consequences (Wallace & Diffley, 1998). 
Surveillance CCTV videos usually contain a large amount 
of visual information coupled with the high complexity of 
human activities (Howard et al., 2009; Hodgetts et al., 2017). 
Hence, CCTV operators, who have acquired extensive expe-
rience in the visual analysis of human actions in real-world 
scenes, likely adopt efficient strategies in information pro-
cessing of social interactions.

Previous studies have compared CCTV operators to nov-
ices when performing the task of judging harmful intent 
from surveillance videos but have yielded mixed results. A 
study by Grant and Williams (2011) using twelve CCTV 
operators and twelve novices viewing video clips of 15 s 
showed no difference between groups in predicting anti-
social behavior, with both performing at chance. Though 
performance was shown to be modulated by the degree 
to which observers focused on the social structure of the 
scenes. Another study by Troscianko et al. (2004), which 
used 50 professional observers and 50 novices, also found 
no group difference. Other studies, however, have found 
group differences between CCTV operators and novices 
in the ability to recognize and predict harmful intent. For 
example, behavioral data showed that CCTV operators were 
more sensitive than novices when making predictions about 
harmful intentions (Petrini et al., 2014). Consistently, the 
resulting brain imaging data showed reduced activity for 
experienced CCTV operators in the parahippocampal gyrus 
(Petrini et al., 2014), and in the Fusiform Face Area and the 
posterior Superior Temporal Sulcus (Gillard et al., 2019), 
which can be viewed as a sign of increased efficiency. A 
follow-on study from Petrini et al. (2014) using eye track-
ing showed that CCTV operators yielded greater in-group 
consistency of fixation patterns (Burling et al., 2016). Hence, 
studying the differences in visual processing between expe-
rienced CCTV operators and novices provides a unique win-
dow to unveil efficient strategies acquired by human experts 
through extensive learning.

Another special feature of intention detection from sur-
veillance videos probes the active processing aspect in vis-
ual analysis by humans. Humans actively sample the visual 
input through brief fixations interspersed with gaze shifts 
over space and time. During a period of stable fixation, the 
information at the central gaze is analyzed in fine detail 
using foveal vision, while peripheral analysis is carried out 
to select the next fixation location for a gaze shift. Recent 
studies have shown significant differences between cen-
tral and peripheral vision in the analysis of human body 
movements (Thurman & Lu, 2013, 2014), showing that 
configural cues based on the spatial arrangement of joint 
trajectories dominate visual processing in central vision, 
whereas local motion and orientation cues interact with 
spatial cues to influence action perception in the periph-
ery. In addition, studies investigating surveillance videos 

have provided evidence that experienced CCTV operators, 
relative to novices, produce different goal-directed eye-
movement patterns when viewing surveillance video, and 
show greater consistency in eye-movement tracking pat-
terns (Howard et al., 2013; Roffo et al., 2013). Although 
these studies have analyzed eye-movement characteristics 
associated with expertise, it remains unknown what stimu-
lus content in surveillance videos drives the active selec-
tion of gaze shifts when identifying social intentions.

Previous evidence has suggested that the understanding 
of human actions relies on different perspectives of vis-
ual features that unfold over time (Dima et al., 2022; Isik 
et al., 2020). To compare visual content attended by CCTV 
operators versus novices, we conducted two computational 
analyses that focus on different levels of visual informa-
tion. The first analysis adopted a saliency model (Itti et al., 
1998) to process gaze-centered regions of videos by char-
acterizing low-level visual features including luminance, 
color, orientation, texture, and motion. The second com-
putational analysis applies a deep convolutional neural 
network (DCNN), AlexNet (Krizhevsky et al., 2012), to 
extract object-level semantic features from gaze-centered 
regions of visual inputs (Kriegeskorte, 2015). The network 
architecture of DCNN is consistent with the hierarchical 
structure of the visual system in human brains, which 
enables DCNNs to cope with nonlinearity and complex 
visual tasks. Beyond a similar architecture, the inner rep-
resentations of DCNNs have also been found to capture 
neural similarities in brain activities for different visual 
inputs (Cichy et al., 2016; Khaligh-Razavi & Kriegeskorte, 
2014; Kriegeskorte et al., 2008; Yamins et al., 2013, 2014; 
for reviews, see Kriegeskorte, 2015; Yamins & DiCarlo. 
2016). Hence, activities in later layers (e.g., fully con-
nected layer) of DCNNs appear to capture abstract features 
crucial to visual knowledge and scene semantics.

Together, the Saliency model and the DCNN model pro-
vide complementary analyses for assessing how CCTV 
operators and novices use various features extracted from 
different levels of visual hierarchy. If low-level visual sali-
ency cues have a greater impact on capturing attention and 
driving the inference of intentions, we would expect to find 
a group difference in visual saliency from the gaze-cen-
tered stimulus regions. On the other hand, if CCTV opera-
tors differ from novices primarily in the use of semantic 
features extracted by high-level visual processing, the 
DCNN may be able to capture the group differences. In 
addition, we examine the inter-subject correlation of visual 
features attended by CCTV operators and novices. If the 
expertise of CCTV operators leads to shared strategies that 
emerged from rich experience in analyzing surveillance 
footage, we would expect to find greater inter-subject cor-
relation of visual features attended among CCTV opera-
tors than for novices.
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Methods

Participants

Eleven CCTV operators (three female, aged 21–53 years, 
M = 36.3, SD = 10.1) and ten novices (two female, aged 
28–43 years, M = 33.8, SD = 6.0) were recruited to par-
ticipate in the eye-tracking experiment. The “operator” 
participants were all employed to monitor CCTV when 
the experiment was conducted and had an average of 4.5 
years of working experience as a CCTV operator (SD = 
3.0, range 0.4–12 years), and viewed CCTV an average of 
10 h (range 8–12 h) per day, summing up to be roughly 
10,000 h of CCTV experience on average. Only four of 
the 11 CCTV operators had received formal training in 
detecting suspicious/abnormal behavior, and that training 
was reported to be mainly in-house given by colleagues 
or on occasion from the local police. Thus, the major-
ity of CCTV operators gained their expertise in detecting 
suspicious behavior through practice and viewing a large 
number of surveillance videos. The “novice” participants 
were defined as individuals with no CCTV surveillance 
or security experience. All participants were adults with 
the racial category of white. The age of the operators and 
novices were matched (independent t-test, t(19) = 0.875, 
p = 0.392). CCTV operators were recruited from CCTV 
control rooms and user groups. Novices were recruited 
from the community through advertisements.

Each participant read and signed a Consent Form that 
described their participation in the experiment and the 
use of the data collected. Informed consent was obtained 
from all participants. All participants were free to leave 
the study at any time. Ethical approval for the primary data 
collection phase of the study, which occurred during the 
period 2008–2010, was obtained from the UK Ministry 
of Defense Research Ethics Committee. Participants were 
paid for their time and travel expenses to attend the experi-
ment at BAE Systems, Advanced Technology Centre, Bris-
tol. All methods were performed in accordance with the 
Internal Review Board (IRB) guidelines and regulations 
and have been performed in accordance with the Declara-
tion of Helsinki. All participant data were de-identified for 
the current analysis.

Stimuli and procedure

Videos of street scenes with human actions recorded 
by CCTV were selected from originally over 800 h of 
CCTV footage obtained of urban scenes in the UK. Four 
paid research assistants with no prior CCTV experience 
screened the corpus of video material and identified CCTV 

clips that resulted in physical aggression (and therefore 
included hostile intent), which were labeled as the “Fight” 
clips. Control scenes were chosen for the “Confrontation”, 
“Playful”, and “Neutral” categories and were matched to 
the Fight clips in several respects: location, time of day, 
and the number of people in each display. A total of 36 
videos were generated for the four action categories, with 
nine videos in each category. The same stimuli have been 
used in the previous study by Petrini et al. (2014). Each 
video lasted 16 s with a frame rate of 25 fps, yielding a 
total of 400 frames, with the image size of 576 × 480 
pixels in a visual angle of 22.5° × 19°. Most of the people 
appeared in the CCTV footages were white, predominately 
young males. In answers to the debrief question of “what 
did you look for in the CCTV footage in order to help 
make your decision?”, none of the participants mentioned 
race-related information. CCTV clips obtained for all four 
categories were matched in terms of location, time of day, 
and number of people in displays. The fight clips showed 
16 s of behavior prior to the onset of a violent incident. 
Hence, no participants in this study viewed any actual vio-
lent acts during the 16-s videos.

Participants (CCTV operators and novices) were shown 
the 36 CCTV footage clips with a quasi-random order, in 
which no clip was preceded by another clip from the same 
category. Their eye movements were recorded while they 
watched the CCTV footage clips in each trial. After each 
clip was shown, participants were asked to predict whether 
a violent event took place or not. Specifically, they rated 
the likelihood that the clips would end in violence, using a 
six-point scale that ranged from 1 (extremely unlikely) to 6 
(extremely likely).

Eye movements were recorded when participants viewed 
these 36 videos. Eye-movement data were collected using 
an ASL Eye-Trace6 system with a sample rate of 50 Hz and 
accuracy approximately 1° across the visual field. For each 
participant, we extracted square image patches from each 
video frame with a window size of 75 × 75 pixels centered 
on a gaze-fixation location in each frame. The size gaze-
contingent window (approximately 3°× 3°) is larger than the 
standard estimate of the foveola, which is roughly 0.5–1.0° 
in diameter (Boff & Lincoln, 1988). We also examined dif-
ferent window sizes of 38 × 38 (1.5° × 1.5°) and 150 × 150 
(6° × 6°) and got similar results. Certain video frames had 
missing eye-tracking data, with an average of 1.1% (i.e., 4.6 
frames among 400 frames).

Behavioral analyses

Behavioral results of the same dataset were partially 
reported in (Petrini et al., 2014). A repeated-measures 
ANOVA was conducted on the ratings regarding the 
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likelihood that the clips would end in violence. The 
analysis used the group label (novice vs. expert) as a 
between-subject factor, and the action category (i.e., 
Fight, Confrontation, Playful, and Neutral) as a within-
subject factor. Detailed results are reported in the Online 
Supplemental Materials (OSM) S1.1.

To further examine the sensitivity and biases of intention 
judgments of CCTV operators and novices, a signal detec-
tion analysis was applied to the likelihood ratings of four 
action categories. Judging a fight clip as having a violent 
outcome (ratings of 4 or more) was scored as a “hit,” and 
judging a confrontation, playful or neutral clip as not hav-
ing a violent outcome (ratings of 3 and less) was scored as 
a “correct rejection.” A calculation of sensitivity index d′, 
and criterion C, was performed for each participant, which 
were used in the decoding analyses below as well. Detailed 
results are reported in the OSM S1.2.

Computational analyses

Two computational models were used to extract visual 
features from the raw videos of surveillance footage: a 
saliency model and a deep convolutional neural network 
model. An illustration of the procedure is shown in Fig. 1. 
The saliency model was adopted to capture low-level 
image features that attract attentive gaze, and the DCNN 
model was adopted to capture object-level features that 
capture semantic information in attended visual scenes. 
For frames with missing eye-tracking data, blank image 

patches were extracted and zeros were used for compu-
tational models.

Saliency model and saliency index

We adopted the saliency model by Itti and colleagues (Itti 
et al., 1998) to analyze the influences of low-level visual 
cues on gaze patterns. The saliency model processes visual 
input in a bottom-up manner and does not capture high-
level visual features associated with objects or people. The 
saliency model decomposes visual inputs into a set of topo-
graphic feature maps, such as motion, luminance, color, tex-
ture, and orientation (Treisman & Gelade, 1980). All feature 
maps feed, in a purely bottom-up manner, into a master "sali-
ency map," which topographically codes for local conspicu-
ity over the entire visual scene. Different spatial locations 
then compete for saliency within each map, such that only 
locations which locally stand out from their surround can 
persist. Specifically, the saliency model can compute scores 
reflecting the degree of gaze-centered regions capturing 
bottom-up visual attention in the video frames.

As shown in Fig. 2, image features were extracted from 
each image frame through six processing channels: lumi-
nance, color (red-green and yellow-blue), orientation, tex-
ture, and motion. Luminance and color maps were calculated 
based on the Derrington-Krauskopf-Lennie (DKL) color 
space (Derrington et al., 1984) using long, medium, and 
short cone response filters. Luminance maps were computed 
as the sum of long and medium cone responses. Colors were 
defined as the difference between long and medium for the 

Fig. 1  Procedures for feature extraction and comparison. A square 
image patch centered on coordinates of fixations was extracted from 
each image frame and these were fed into models as input. The sali-
ency model extracted saliency features, which were used to derive a 
saliency index to compare across groups. The extracted saliency fea-
tures were also entered into an elastic net regression model for decod-

ing CCTV operators from novices. The AlexNet extracted fully-con-
nected layer features as inputs for entry to an elastic net regression 
model for the decoding purpose. Inter-subject correlation (ISC) indi-
ces based on saliency features and DCNN features were compared 
between groups. Note, the blurred image frame was selected for dem-
onstration and was not from the real experimental materials
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red-green colormap and (Long + Medium) - Short for the 
yellow-blue colormap. The orientation map was created by 
applying a series of Gabor filters to the grayscale image to 
detect line-segment edges. The texture map was created by 
applying a series of Laplacian of Gaussian (LoG, or Mexican 
hat) filters of different spatial sizes proportional to the gray-
scale image size. The optical flow map was estimated using 
an orientation tensor (Farneback, 2000), which processes 
the current and the previous image frame to detect shifts 
in location of each pixel in temporally neighboring frames. 
Only vector magnitude was used to represent optical flow 
magnitudes (i.e., motion speed) without the consideration 
of motion directions.

For each image frame, a pyramid stack was created for 
each feature channel that included the original size of the 
source image patch (75 × 75 pixels), half-size, quarter-
size, and eighth-size scales of the image. Gaussian blur was 
applied before each downsampling operation. Pyramids 
achieved the result of increasing the receptive field during 
the activation step. A center-surround activation step was 
implemented as a combination of Laplacian-Gaussian con-
volution and Gaussian blur, and was applied to each map 
iteratively for a total of five passes of the convolution ker-
nels. All convolution kernels used to extract feature maps 
during activation were applied to the source image. A tem-
poral buffer of the pyramid stacks was created to keep track 
of the previous two frames and the current frame. The buffer 
was used to record previous feature channel weights and 
final saliency maps, acting as a weighted memory for past 
salient regions. For each new frame, past saliency images 
were weighted by half of their current values.

After extracting and processing the pyramid stacks, fea-
ture maps have different value ranges. The normalization 
step obtains a common scale across all feature maps so that 
they can later be combined into a single saliency map. For 
normalization, each feature map within a pyramid stack was 

scanned to enhance the contrast between salient and non-
salient regions. The sum of feature values for the salient 
regions was used to compute normalization factors to be 
applied to the set of feature maps. The normalization factors 
for the current source image were weighted by the normali-
zation factors stored in the temporal buffer, and the current 
maps were then scaled according to the weighted normali-
zation factors. The weighted normalization factors used for 
subsequent analysis were exported for each image frame to 
assess the relative contribution of each feature channel.

To calculate the final saliency map for an image frame, 
first, the feature maps were compressed into a single map by 
summing across pyramid levels for each channel and divid-
ing by the size of a pyramid stack, yielding an intermediate 
saliency map for each feature channel. Secondly, the inter-
mediate saliency maps per feature channel were summed to 
create a single saliency map for the current image frame. 
The saliency map for the current image frame was then com-
bined with the weight-decayed saliency maps from previous 
two frames and the current frame in the temporal buffer to 
obtain a final saliency map. Lastly, the final map was pro-
cessed with a logistic activation function that increases the 
contrast between salient and non-salient regions, which was 
also exported for analysis. Using the final saliency maps 
from a sequence of image frames, a saliency index was cal-
culated by computing the average saliency values within a 
gaze-centered region in the saliency maps.

Saliency analysis

To examine whether CCTV operators and novices’ gaze pat-
terns are impacted differently by low-level saliency cues, 
we conducted repeated-measures ANOVAs for each action 
category to examine the group difference between CCTV 
operators and novices on the saliency index and the six fea-
ture dimensions. We hypothesize that if the visual contents 

Fig. 2  Image features were extracted from each image frame through six processing channels in the saliency model. Note, the image frame was 
selected for demonstration and was not from the real experimental materials
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attended by CCTV operators in their gaze fixations differ 
from the visual information captured by novices in terms 
of salient low-level features (e.g., luminance or motion 
features), we would expect to observe a group difference 
between the two groups of participants in the saliency index 
obtained from gaze-centered regions derived from their eye 
movement patterns.

We concatenated six saliency features across frames to form 
a multidimensional saliency vector to train a machine learning 
classifier based on elastic net regularization (Tibshirani, 1996; 
Zou & Hastie, 2005). The classifier was trained to differentiate 
CCTV operators and novices based on the attended low-level 
saliency information. Specifically, the concatenated feature vec-
tors were entered as predictors to the generalized linear model 
(GLM) to classify CCTV operators and novices. The classifier 
used the elastic net regularization to favor the selection of a 
small number of important features that help predict the class 
labels. The elastic net regularization has a free parameter, α, 
controlling the weight between a lasso (L1) and a ridge (L2) 
regularization. We set an alpha value of 1 to favor a smaller 
number of features. We also used a parameter value of 0.9 and 
0.8 that yielded similar results. The model was trained in a 
leave-one-out manner with 21 iterations. Specifically in each 
iteration, 20 participants were randomly selected for training, 
and the remaining one participant was used for testing to let 
the classifier determine whether this testing participant was a 
CCTV operator or a novice. Classification accuracy was aver-
aged across all 21 iterations.

To reflect the online processing with cumulative infor-
mation over time, for each video, features were concat-
enated across a set of non-overlapping cumulative temporal 
windows with a step-size of 50 frames (i.e., concatenating 
features of frames 1–50, frames 51–100, …, and frames 
351–400), yielding eight chunks of feature vectors. Using 
cumulative frames by concatenation takes into consideration 
the temporal dependency in action videos. We explored a 
set of temporal cumulation windows because critical events 
occurred at different time points for different surveillance 
footage.

Since the most informative signal that differentiates 
CCTV operators and novices may emerge at different time 
points, the maximum classification accuracy over temporal 
cumulation windows was used for each video as the decod-
ing accuracy of the classifier. For example, for confrontation 
video No.1, the maximum classification accuracy may arise 
from early frames of the video with cumulating frames 1–50, 
while confrontation video No. 2 may reveal the maximum 
classification accuracy from a different temporal window of 
frames 51–100. If operators and novices attended to system-
atically different low-level features captured through the sali-
ency model, we would expect that the classifier should show 
above chance-level accuracy in differentiating operators and 
novices. Furthermore, if attentive features were influenced 

by the nature of intention underlying the observed actions, 
the classifier accuracy may vary depending on the presence 
or absence of harmful intentions. Bonferroni multiple-com-
parison correction was applied to the statistical testing of 
decoding accuracy.

Furthermore, to examine whether operators or novices 
consistently attend to information with high saliency, inter-
subject correlations were calculated for the operator group 
and the novice group separately. For image patches cen-
tered at gaze fixations in each frame, a saliency vector was 
extracted from all six feature maps. To transform features 
onto a common scale and remove outliers, z-score normali-
zation was applied for each feature channel across all vid-
eos and subjects. The similarity of gaze-centered saliency 
between a pair of participants was computed as the corre-
lation of concatenated saliency vectors over time for each 
video (i.e., each video yields a 2,400-element-long vector 
coming from six features of 400 frames). Higher similar-
ity values indicate that two participants attended to regions 
with a similar degree of visual saliency. For each video, the 
inter-subject correlation (ISC) was defined as the average 
similarity value across all pairs of participants within the 
operator group and within the novice group.

Deep convolutional neural network model and analysis

In the DCNN analysis, due to the high similarity of objects 
involved in consecutive frames, one frame out of every ten 
frames was sampled as inputs into models. Thus, the origi-
nal 400 frames of surveillance footage were downsampled 
to 40 frames to reduce computational demands. To investi-
gate the group difference on a semantic level, we adopted 
a pre-trained DCNN, AlexNet, to extract object-level fea-
tures. AlexNet contains five convolutional layers and three 
fully connected layers. For each image patch centered at 
the gaze fixation, we extracted the activations from the 
penultimate layer, fully connected layer 7 (FC7, containing 
1*4096 units), a layer just before the decision layer for object 
categorization in AlexNet. For each video (36 videos in 
total), features of image patches centered on fixations were 
extracted from the penultimate layer (i.e., FC7) of AlexNet. 
Each gaze-centered image patch yields a feature vector in 
a size of 1 by 4096. Similar to the analysis approach used 
for the saliency model, to reflect the online processing with 
cumulative information over time, for each video, features 
were concatenated across a set of cumulative frame windows 
with a step-size of 5 frames (i.e., concatenating features of 
frames 1–5, frames 6–10, …, and frames 36–40). Because 
the DCNN features were downsampled by a factor of 10, 
current windows with five frames match what was used for 
the saliency model. The classifier with elastic net regulari-
zation was applied to the DCNN features to differentiate 
visual information attended by CCTV operators and novices. 
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Training and testing procedures were the same as the classi-
fier with saliency features. If operators and novices attended 
to systematically different object-level features captured 
through the DCNN model, we would expect the classifier 
to show the above chance-level accuracy in differentiating 
operators and novices.

Similar to the saliency analysis, to examine whether opera-
tors or novices consistently attend to object-level information 
extracted by DCNN, inter-subject correlations were calculated 
for the operator group and the novice group separately. First, 
FC7 features of all gaze-centered image regions were concate-
nated across time by video. ISC was calculated as the correla-
tion coefficients of concatenated feature vectors between pairs 
of operators, or between pairs of novice participants. This 
procedure was repeated for each of the 36 videos, respectively.

Analysis based on the combination of Saliency and DCNN 
features

To examine joint influences of low- and high-level informa-
tion that supports intention inference and differentiates CCTV 
operators from novices, we examined the decoding perfor-
mance of differentiating two groups by each feature type 
separately, as well as jointly by concatenating both types of 
features. The decoding was conducted frame-by-frame, and 
the maximum accuracy was taken from each 4-s time-chunk.

Furthermore, to examine how visual features associate with 
behavioral performance, we performed an action-category 
decoding analysis with both types of features. Specifically, the 
elastic net performs decoding of fighting versus non-fighting 
videos (i.e., confrontation, playing, and neutral actions) for 
each subject. The decoding analysis was conducted frame-by-
frame, and the maximum accuracy was taken from each 4-s 
time-chunk. Pairwise Pearson correlations were conducted 
between behavioral performance (i.e., sensitivity and bias) 
and decoding accuracies of two types of features.

Finally, to examine how the two types of features differ 
between operators and novices, we conducted an ISC analysis 
between CCTV operators and novices. For each video, an 
average saliency/DCNN feature vector was calculated for the 
operator group and the novice group respectively. Correlations 
between the individual-subject feature vector and the aver-
aged group feature were calculated (i.e., individual operators/
novices vs. averaged operator/novice group features), yielding 
degrees of similarity between CCTV operators and novices.

Looking content analysis based on AlexNet outputs

We further explored AlexNet output layers of 1,000 object 
categories to examine the characteristics of looking contents 
in gaze-centered regions. Please see OSM S4 for the detailed 
analyses methods and results.

Results

Saliency analyses

Saliency indices of CCTV operators and novices

Figure 3 depicts the saliency index for image patches in 
the gaze fixation areas as a function of video time for 
CCTV operators and novices. Mixed ANOVA models 
with participant group as a between-subjects factor and 
time as a within-subjects factor were conducted on the 
saliency index for each of the four action categories. For 
all four types of actions, we found significant main effects 
of time (ps < .001). This result suggests that visual sali-
ency changes dynamically across video frames. However, 
no action type showed a main effect of participant group, 
revealing that image patches attended by CCTV operators 
and novices do not show significant differences in terms of 
total visual saliency scores. The two-way interaction effect 
between time and participant groups was not significant 
for any of the action types (ps > 0.05). We also reran the 
analysis by removing missing frames and results yielded 
a similar trend (see OSM S2.1).

Saliency feature decoding of CCTV operators and novices

We next conducted a multivariate classification analysis to 
investigate whether CCTV operators and novices could be 
decoded based on patterns of saliency features. As shown 
in Fig. 4a, all four actions reached decoding accuracy that 
was significantly greater than the chance level of 0.5. One-
sample t-tests were carried out and each tested against a 
Bonferroni-adjusted alpha level of 0.0125 (0.05/4 for four 
action categories, same below, Fight: M = 0.68; Confron-
tation: M = 0.69; Playful: M = 0.71; Neutral: M = 0.65, 
ps < .01). To ensure that the unequal sample size did not 
affect the reported results, we also ran analyses by remov-
ing one data point from the CCTV operator group. Results 
were similar to before, where all four actions reached a 
decoding accuracy that was significantly greater than the 
chance level tested against a Bonferroni-adjusted alpha 
level (see OSM S2.2 for detailed reports). By examining 
the contribution of six saliency features, we found that 
optical-flow motion information was the most frequently 
selected feature to differentiate operators from novices 
(see Fig. 4b and OSM S2.3).

To examine whether the effect was driven by noise, we 
conducted a permutation test where the feature dimen-
sion of saliency channels was shuffled, and decoding was 
conducted based on shuffled data. A total of 100 itera-
tions were conducted and the distribution of permuted 
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decoding accuracy results was compared to the real effect. 
One-sample t-tests showed that the averaged decoding 
accuracy based on real saliency features were signifi-
cantly greater than the performance of permuted results 
for all action categories (ps < .001).

Inter‑subject correlation (ISC) of saliency index

Saliency ISC of each action category within the groups 
are shown in Fig.  5a. A repeated-measure ANOVA 
was conducted with groups and action categories as 

Fig. 3  Saliency indices of the CCTV operator and novice groups over time for four types of actions. Each data point corresponds to the averaged 
saliency index every 2 s. Shaded areas indicate standard error

Fig. 4  (a) Decoding accuracy based on saliency features for dis-
criminating CCTV operators from novices. Error bars indicate SDs 
of accuracy from leave-one-out iterations. Asterisks indicate sig-
nificantly greater than the chance level tested against a Bonferroni-
corrected alpha level. (b) Proportions of saliency features selected 
in the elastic net regression decoding analysis. From left to right, the 

six feature dimensions represent luminance, red-green color, yellow-
blue color, orientation, texture, and optical-flow motion information. 
Error bars indicate SDs of decoding accuracies among videos in each 
action category. Asterisks indicate significant differences between 
feature dimensions
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within- and between-subject factors. The ANOVA showed 
a significant main effect of the participant group, F(1,32) 
= 9.38, p = 0.004, ηp

2 = .227, observed power = .844, 
resulting from greater inter-subject correlation among 
experienced operators (M±SD = 0.35±0.13) than among 
the novice group (M±SD = 0.32±0.12) . Group compari-
sons of ISC of each action category are reported in OSM 
S2.4. We also conducted Bayesian analysis on the inter-
subject correlations, yielding a Bayes factor of 15.14, 
suggesting that the hypothesis of greater inter-subject 
correlation of using saliency features among operators 
than novices was 15 times more likely than the alterna-
tive hypothesis where two groups yielded equal ISCs on 
saliency features. Neither the main effect of action cat-
egories, nor the two-way interaction between groups and 
action categories was significant (ps > 0.05).

Additionally, to examine how the group difference on 
the consistency in the extracted saliency features emerges 
over time, we examined the dynamic change of ISC for 
every two seconds in time, yielding eight time-chunks. 
Saliency ISC of CCTV operators were compared to nov-
ices at each time point. As shown in Fig. 5b, none of the 
group differences survived Bonferroni correction.

DCNN feature analysis

DCNN decoding of CCTV operators and novices

Features extracted from DCNN were used to train a clas-
sifier to recognize visual information attended by opera-
tors or by novices. As shown in Fig. 6, all actions reached 
a classification accuracy that was significantly above the 
chance level after Bonferroni correction (Fight: M = 0.71; 
Confrontation: M = 0.74; Playful: M = 0.71; Neutral: M 

= 0.67, ps < .01), suggesting that the DCNN features for 
gaze-centered regions were able to classify CCTV opera-
tors from novices. Permutation tests further showed that 
the averaged decoding accuracy based on real DCNN fea-
tures were significantly greater than the performance of 
permuted results for all action categories (ps<.001). We 
also reran analyses by randomly removing one data point 
from the CCTV operator group to equate the sample size 
of the two groups, and all four actions yielded decoding 
accuracy that was significantly greater than the chance 
level tested against a Bonferroni-adjusted alpha level (see 
OSM S3.1 for a detailed report). We also reran the analysis 
by removing two subjects with excessive missing frames 
and results yielded a similar trend (see OSM S3.2).

Fig. 5  Saliency inter-subject correlation (ISC) results. (a) Saliency 
ISC of each action category within the CCTV operator group and 
within the novice group, calculated by averaging pairwise correla-
tions of saliency features concatenated over time for each video. Error 

bars indicate SEs across videos in each action category. (b) Saliency 
ISC integrated within every 2-s time window for CCTV operators and 
novices. Shaded areas indicate SEs

* * * *

Fight Confront Playful Neutral
0

0.2

0.4

0.6

0.8

1

D
C

N
N

 fe
at

ur
e 

de
co

di
ng

 a
cc

ur
ac

y

Fig. 6  Decoding accuracy based on fully-connected layer DCNN 
features on discriminating CCTV operators from novices. Error 
bars indicate SDs of accuracy among all videos in one action cate-
gory. Asterisks indicate significantly greater than chance level tested 
against a Bonferroni corrected alpha level
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Inter‑subject correlation of DCNN features

As shown in Fig. 7a, using DCNN features, ISCs aver-
aged across nine videos in each action category were com-
pared between CCTV operators and novices. A repeated-
measure ANOVA showed a significant main effect of the 
participant group, F(1,32) = 26.26, p < .001, ηp

2 = .451, 
observed power = .999, resulting from higher inter-sub-
ject correlation among experienced operators (M ± SD = 
0.69 ± 0.062) than among the novice group (M ± SD = 
0.67 ± 0.067). Bayesian analysis yielded a Bayes factor 
of 2836.03, suggesting that the hypothesis of greater ISC 
among operators than novices was 2,836 times more likely 
than the alternative hypothesis of no group differences. 
The main effect of action categories was not significant, 
F(1,3) = 2.31, p = .095, ηp

2 = .53. The two-way interaction 
between groups and action categories was not significant, 
F(3,32) = 1.56, p = 0.219, ηp

2 = .37.
To examine how the group difference on the consistency 

in the extracted DCNN features emerges over time, we 
further examined the dynamic change of ISC for every 2 s 
in time, yielding eight time-chunks. As shown in Fig. 7b, 
CCTV operators and novices showed significant group dif-
ferences both at the very beginning of videos (p < .001, 
tested against a Bonferroni-adjusted alpha level = 0.00625 
given eight time-chunks) and during the latter half of video 
displays (8–10 s p = .002, and 10–12 s p = .004). This 
indicates that CCTV operators showed more consistency 
in DCNN features than novices even at the onset of vid-
eos. This result suggests that operators may share some 
potential strategies to capture certain high-level semantic 
information about surveillance footages at the beginning 
and during a period later in the videos, which is critical for 
the recognition and prediction of intentions and potentially 
harmful behaviors.

Analysis based on the combination of Saliency 
and DCNN features

Feature contributions to differentiating CCTV operators 
from novices

A repeated-measures ANOVA was performed to examine 
the decoding accuracy in classifying group membership of 
participants associated with two types of features. Action 
categories were entered as the between-subject variable. 
Types of features (i.e., saliency, DCNN, or concatenated 
feature) and time chunks were entered as within-subject 
variables. Results showed a significant main effect of fea-
ture types, F(2,31) = 4.48, p = .020, ηp

2 = .18. None of the 
other main effects, two-way, or three-way interactions were 
significant. Post hoc pairwise comparisons showed that the 
DCNN feature-only (M ± SD = .717 ± 0.009, p = .010) 
and concatenated features (M ± SD = .720 ± 0.008, p = 

Fig. 7  DCNN ISC results. (a) DCNN ISC of each action category as 
calculated by averaging pairwise correlations of DCNN FC7 features 
concatenated over time within the CCTV operator group or within 
the novice group. Error bars indicate SEs across videos in each action 

category. (b) Group differences in DCNN ISC over time. Shaded 
areas indicate SEs. Asterisks indicate significant group differences 
tested against a Bonferroni corrected alpha level

Fig. 8  Decoding performance for classifying CCTV operators and 
novices based on saliency, DCNN, and combined features in gaze-
centered stimulus regions over time
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0.005) yielded significantly greater decoding accuracies than 
the saliency-only feature (M ± SD =.686 ± 0.007). Concat-
enated features did not show a significant difference com-
pared to DCNN-only features (p = .695) in terms of decod-
ing accuracy in classifying CCTV operators and novices. 
The results indicate that DCNN features capture high-level 
information that may be used differently between CCTV 
operators and novices, in addition to the different use of low-
level visual features between the two groups. Interestingly, 
as shown in Fig. 8, decoding accuracy in classifying group 
membership showed greater differences between DCNN and 
saliency features over time, especially in the latter half of 
video observations (8–12 s, t(35) = 2.096, p = .043, and 
12–16 s, t(35) = 2.057, p = .047). Together, the decoding 
accuracy of the combined features consistently revealed that 
CCTV operators may use both saliency and DCNN features 
differently from novices at the beginning of the videos (as 
combined features showed greater decoding accuracy than 
either saliency or DCNN features in the decoding of groups), 
but the group differences primarily emerged to object-level 
DCNN features during the second half of the videos as 
events unfold over time (as DCNN features started to show 
significantly greater decoding accuracy in the latter half than 
the saliency features).

Inter‑group correlations of saliency and DCNN features

Correlations between two groups were entered into repeated-
measure ANOVA. Not surprisingly, for saliency features, 
results showed a significant two-way interaction between 
individual feature groups and averaged feature groups, 
F(1,35) = 425.78, p < 0.001, ηp

2 = .924, observed power = 
1.0, showing that individual features showed significantly 
greater correlations to the averaged features of the same 
group assignment (Fig. 9a). For DCNN features, a similar 
two-way interaction effect was found, F(1,35) = 720.78, p 
< 0.001, ηp

2 = .954, observed power = 1.0 (Fig. 9b). Both 

CCTV operators and novices got a fair level of correlations 
to the averaged features from the other group, but signifi-
cantly greater correlations within groups. The patterns of 
results suggest that CCTV operators and novices demon-
strate shared and unique features components on both low-
level saliency cues and high-level DCNN features.

Discussion

The current study adopted a saliency model and a DCNN 
model to examine the impact of low- and high-level visual 
information attended in gaze patterns of experienced CCTV 
operators and novices when viewing surveillance footages. 
For the low-level visual cues extracted by the saliency 
model, we did not find group-level differences in saliency 
indices, but classifiers based on patterns of saliency features 
of gaze-centered regions distinguished CCTV operators 
from the novices. We also found greater consistency of using 
saliency information among CCTV operators, suggesting 
that CCTV operators employed shared strategies to focus on 
certain patterns of visually salient cues (e.g., certain motion 
patterns) that likely facilitated intention inference and pre-
diction. For the object-level features extracted by the DCNN 
model, we were also able to distinguish the gaze patterns of 
the CCTV operators from the novices, which reflect seman-
tic representations of entities in visual scenes. Additionally, 
CCTV operators showed a higher inter-subject correlation in 
using similar DCNN features than novices, suggesting more 
similar information-seeking eye-movement patterns among 
operators when predicting potentially harmful interaction 
outcomes.

Here, we reliably decoded groups based on both pat-
terns of low-level saliency features and patterns of object-
relevant semantic features extracted by DCNN. These 
results may suggest that extensive experience of moni-
toring surveillance footage induces strategies in different 

Fig. 9  Inter-group correlations for (a) Saliency features, and (b) 
DCNN features. Averaged features were calculated for each subject 
group, for each video respectively. Pearson correlations were con-

ducted between individuals in each group and the averaged group 
features. Error bars indicate SDs of correlation coefficients among all 
the videos
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patterns of gaze-centered saliency and semantic features 
toward goal-directed actions. For example, Howard et al. 
(2010) found that individuals with more experience watch-
ing football matches made eye movements to goal-relevant 
areas of the scene earlier than non-experts. In a meta-
analysis by Gegenfurtner et al. (2011), effects of expertise 
were robustly associated with an increased frequency of 
fixations on goal-relevant information and reduced laten-
cies for first fixations on these areas. From the decoding of 
saliency features, we found that the most frequently used 
feature that distinguishes CCTV operators and novices was 
motion cues, which may result from efficient processing of 
human actions in experts. The enhanced attention to goal-
relevant information (and consequently, reduced attention 
to irrelevant information) may underly the effect of exper-
tise in a variety of visual tasks (Haider & Frensch, 1996).

The higher inter-subject correlation among operators in 
the extracted saliency features and DCNN features based 
on looking behavior is consistent with previous findings 
about expertise in processing surveillance footages. For 
example, Howard et al. (2013) found that when monitor-
ing a single scene to detect potentially suspicious events, 
trained CCTV operators showed greater consistency in 
fixation location by "knowing what to look for" compared 
to novices. Using the same dataset as the current study, 
Roffo et al. (2013) found that expert operators are more 
likely to focus on a small number of interesting regions, 
sampling them with high frequency. A neuroimaging study 
also provided converging evidence by demonstrating that 
CCTV operators showed increased synchronization of 
neural responses in certain regions of the brain than do 
novices (Petrini et al., 2014).

By contrasting the two types of model features, we found 
evidence that the high-level DCNN feature may contribute 
more to differentiating looking behaviors of CCTV opera-
tors from novices. As shown in OSM S4, the AlexNet output 
analysis, while CCTV operators showed greater probabilities 
of looking at facial and clothing areas, novices may be dis-
tracted by texture and color information in the video clips 
(OSM Fig. S5). Thus, the high-level information may enable 
CCTV operators to have a better chance of visually locat-
ing instigators in videos that end up with violent intentions, 
whereas novices may be distracted by objects with high sali-
ency, such as streetlights or moving traffic. Furthermore, 
by examining the change of decoding accuracy over time 
and relationship between decoding accuracy and behavioral 
performance, we showed that the two types of features may 
dominate visual observation at different temporal stages. 
While saliency cues may contribute more at early stages, 
DCNN features may demonstrate stronger dominance during 
the latter half of video observation, suggesting that intention 
inference may start with low-level visual cues and gradually 
move on to semantic-level visual processing.

A few limitations should be addressed in future stud-
ies. The fully connected layer of DCNN takes increasingly 
complex visual feature patterns extracted by a sequence of 
convolutional layers and develops invariant representations 
of objects that resemble the inferior temporal (IT) cortex 
(e.g., Cichy et al., 2016; D. L. Yamins et al., 2014). How-
ever, even though the AlexNet model was pre-trained to 
recognize 1,000 object categories, it does not contain all the 
entities often encountered in surveillance footage, and may 
restrain the formation of efficient representations of agents 
and objects. Future studies with DCNNs that are more spe-
cialized in video understanding and scene analysis may fur-
ther advance the probe of high-level semantic information 
contributing the expert’s recognition of intentions in social 
interactions. For example, the two-stream DCNN (Simonyan 
& Zisserman, 2014) inspired by the two-stream processing of 
biological motion perception in the brain provided a qualita-
tive account of some behavioral results observed in human 
biological motion perception (Peng et al., 2021) and may be 
used in future investigations.

Together, the current study combines eye movement data 
with computational analysis to reveal the impact of inten-
sive training with surveillance footage on the visual pro-
cessing of human interactions from a unique perspective. 
The results from the two computational analyses indicate 
that CCTV experience facilitates the recognition of intention 
from natural videos via actively processing low-level visual 
saliency and object-level semantic information. Novices may 
be momentarily distracted by unimportant visual cues that 
do not necessarily inform the upcoming social outcomes. 
In contrast, CCTV operators may consistently and strategi-
cally direct selective attention toward visual regions reveal-
ing goal-relevant semantics, such as a person walking toward 
a group of people who may end up joining the fight. Indeed, 
part of CCTV training includes developing awareness for a 
whole scene to acquire evidence about all relevant people 
and objects (Walker et al. 2021). The current results not only 
shed light on how extensive experience shapes up visual 
processing of complex stimuli in biological systems, but 
also illustrate the promise of using computational models 
to analyze visual information attended by different groups of 
participants. Furthermore, our findings imply that computer 
vision algorithms that incorporate both visual pattern recog-
nition in images and semantic encoding of the inter-person 
relationship at the abstract level may advance the ability of 
AI in inferring social intentions and making predictions on 
harmful outcomes.
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