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Abstract   18 

(150 words)  19 

Humans can recognize their whole-body movements even when displayed as dynamic dot 20 

patterns. The sparse depiction of whole-body movements, coupled with a lack of visual 21 

experience watching ourselves in the world, has long implicated non-visual mechanisms to self-22 

action recognition. We aimed to identify the neural systems for this ability. Using general linear 23 

modeling and multivariate analyses on human brain imaging data from male and female 24 

participants, we first found that cortical areas linked to motor processes, including frontoparietal 25 

and primary somatomotor cortices, exhibit greater engagement and functional connectivity 26 

when recognizing self-generated versus other-generated actions. Next, we show that these 27 

regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic 28 

visual cues using multiple regression representational similarity analysis. Last, we found the 29 

reverse pattern for unfamiliar individuals: encoding localized to occipito-temporal visual regions. 30 

These findings suggest that self-awareness from actions emerges from the interplay of motor 31 

and visual processes. 32 

Significance Statement: We report for the first time that self-recognition from visual observation of our 33 
whole-body actions implicates brain regions associated with motor processes. On functional 34 
neuroimaging data, we found greater activity and unique representational patterns in brain areas and 35 
networks linked to motor processes when viewing our own actions relative to viewing the actions of 36 
others. These findings introduce an important role of motor mechanisms in distinguishing the self from 37 
others. 38 

  39 

 40 
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 Introduction 41 

 Self-recognition is possible even from visually minimalistic dot-displays (Johansson, 42 

1973; Cutting & Kozlowski, 1977; Loula et al., 2005). These displays, called point-light 43 

displays (PLDs), depict whole-body actions with around a dozen moving dots (Johansson, 44 

1973; Cutting & Kozlowski, 1977; Loula et al., 2005). While glimpses of our whole-bodies 45 

may be captured in videos or glass mirrors, they are far less observable than the rich 46 

visual experiences we have seeing movements of close friends or family members. Yet, 47 

humans recognize their own movements better than familiar others’ in PLDs (Loula et al., 48 

2005; Beardsworth & Buckner, 1981). This self-recognition advantage persists across 49 

viewpoints (Jokisch et al., 2006; Prasad & Shiffrar, 2009), task judgments (Knoblich & 50 

Flach, 2001; Bischoff et al., 2012), body parts (Frassinetti et al., 2009; Daprati & Sirigu, 51 

2002), and action types (Burling et al., 2019; Kadambi et al., 2024), suggesting that self-52 

action recognition relies on modalities more than vision alone. Despite consistent 53 

behavioral evidence, the neural mechanisms remain untested, representing a crucial gap 54 

in understanding human self-awareness.  55 
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Neuroimaging studies in visual neuroscience often omit the self and focus on the 56 

neural mechanisms coding other people’s actions. These studies show that action 57 

recognition engages a distributed network of cortical areas, termed action observation 58 

network (AON). This network consists of occipito-temporal (OT) (posterior superior 59 

temporal sulcus (pSTS), extrastriate body area, fusiform gyri) and frontoparietal circuits 60 

engaged during action production, including inferior parietal lobe (IPL), premotor cortex 61 

(PM), inferior frontal cortex (IFC), and supplementary motor area (SMA). The crucial 62 

connection between OT and frontoparietal regions is via pSTS-IPL direct connections, 63 

bridging action recognition via visual processing with cognitive theories of action 64 

simulation (Ürgen et al., 2019; Grèzes et al., 2003). 65 

While OT regions encode actions irrespective of identity, frontoparietal and 66 

somatomotor regions may be critical for self-recognition. These regions are attributed 67 

action simulation, or mirroring, functions– mapping observed actions onto one’s own 68 

motor system. For instance, spiking activity from single and multi-units recorded first in 69 

frontoparietal regions in macaques (Di Pellegrino et al., 1992; Fogassi et al, 2005) and 70 

later in medial frontal cortex (likely pre-SMA) in humans (Mukamel et al., 2010) during 71 

action observation show similar activity during action production. This correspondence in 72 

spiking activity is further seen with systems-level activity in these regions during brain 73 

imaging and is modulated by the observer's motor familiarity with the action (Rizzolatti & 74 

Craighero, 2004; Iacoboni, 2009; Calvo-Marino et al., 2006). Since self-generated actions 75 

are most motorically familiar, this could be one mechanism to help differentiate self and 76 

other actions. 77 
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To date, few neuroimaging studies have investigated self-action recognition from 78 

PLDs. These studies support frontoparietal involvement, but used isolated body parts 79 

(Bischoff et al., 2012; Macuga and Frey, 2011) or actions that were not self-generated, 80 

but associated with self-identity (Woźniak et al., 2022). Hence, the neural mechanisms 81 

supporting self-recognition of whole-body actions remain untested. Moreover, beyond 82 

regional univariate activity, representational markers are needed to elucidate the featural 83 

space supporting self-recognition. Using representational similarity analysis (RSA; 84 

Kriegeskorte et al., 2008) can be a viable tool to localize and infer the type of information 85 

encoded in neural activity patterns.  86 

In the present study, we asked the following: which neural systems underlie self-87 

recognition from whole-body actions? Does self-action recognition rely more on motor 88 

mechanisms, even after accounting for distinctive visual features of the actions, as compared to 89 

other identities? To address these questions, we conducted a multimodal imaging study across 90 

two sessions. In Session 1, we motion-captured a range of actions of participants and their close 91 

friend of the same sex. These actions were performed using both visual instruction (imitation) 92 

and verbal instruction (freely performed). After a delay period, participants returned in Session 2 93 

for fMRI where they underwent an identity-recognition task on PLDs of themselves, friends, and 94 

strangers. 95 

We hypothesized that AON would be involved during action observation for all identities 96 

(self, friends, strangers), encoded in occipito-temporal regions. However, we expected that 97 

frontoparietal regions associated with motor processes would greater engage for the self, 98 

controlling for visual familiarity (friend) and person identity (stranger). Moreover, if these regions 99 

encode motor information to achieve self-recognition, then we expected that activity patterns in 100 

frontoparietal and motor regions would relate to motor familiarity with actions, captured over and 101 

above visual feature contributions. 102 
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 103 

Materials and Methods  104 

Participants  105 

Twenty right-handed undergraduate participants (Mage = 20.55, SDage  = 1.73, females = 12, 106 

males = 8) were recruited from around the University of California, Los Angeles area using 107 

convenience sampling. All participants were provided payment for their participation. Sample 108 

size was based on prior fMRI studies most similar to ours using biological motion (e.g., Saygin 109 

et al., 2004; Chang et al., 2021; Engelen et al., 2015) and self-generated point-light displays 110 

(Bischoff et al., 2012). The study was approved by the UCLA Institutional Review Board. All 111 

participants were naïve to the purpose of the study. Participants had normal or corrected-to-112 

normal vision and no physical disabilities.  113 

Apparatus  114 

The Microsoft Kinect V2.0 and Kinect SDK were used for motion-capture of actions, as in 115 

previous studies on self-action recognition (Kadambi et al., 2024; Burling et al., 2019). 116 

Customized software developed in our lab was used to enhance movement signals, and to carry 117 

out additional processing and trimming for actions presented later in the testing phase (Van 118 

Boxtel & Lu, 2013). Three-dimensional (X-Y-Z) coordinates of the key joints were extracted at a 119 

rate of approximately 33 frames per second. Each action was trimmed to the start and stop of a 120 

T-position signaled by the participant and normalized to scale for use in the experimental task. 121 

Note that while motion capture accuracy was high, the Kinect occasionally produced noise 122 

jittering in the stimuli, where frame-to-frame joints positions occasionally showed sudden jumps 123 

in position. Hence, to remove noisy frame-to-frame jitter, we impinged a manual correction for 124 

certain frames (i.e., replacing with the closest previous frame where the jitter was not present).   125 
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Stimuli  126 

Twelve actions were selected from our previous work on self-action recognition (Burling et al., 127 

2019; Kadambi and Lu, 2019; Kadambi et al., 2024). These actions conveyed a range of 128 

variability in terms of action planning. Six of the actions (i.e. argue, wash windows, get attention, 129 

hurry up, stretch, and play guitar) were categorized as “verbally instructed actions”, delineated 130 

by a high degree of motor goal complexity as defined in our previous work (Burling et al., 2019; 131 

Kadambi et al., 2024). These actions were verbally instructed to the participant (e.g., please 132 

perform the action: “to argue”). The remaining six actions were visually instructed (imitation) 133 

actions, depicting a range of simple and complex goals (i.e., jumping jacks, basketball, digging, 134 

chopping, laughing, directing traffic). For these actions, participants observed a stick figure 135 

performing an action without any verbal label provided and were then instructed to ‘imitate the 136 

movements of the action.’ These stick figure actions were selected from the Carnegie Mellon 137 

Graphics (CMU) Lab Motion Capture Database available online (http://mocap.cs.cmu.edu), 138 

generated from actors whose motions were already pre-captured. PLDs were thus created using 139 

the above method for each participant, a sex-matched friend, and a sex-matched stranger. The 140 

stranger's action was randomly selected from one of three possible distractors for each sex (six 141 

total), pre-captured from actions of two of the experimenters and research assistants. The 142 

categorization of the action types, in addition to providing variability of the action goal, allowed 143 

us to further explore secondary analyses contrasting actions involving less motor familiarity due 144 

to copying someone else’s motor plan (visual instruction) versus actions that involved more 145 

motor familiarity due to freely performing the action (verbal instruction).  146 

  Procedure  147 

Behavioral Session  148 

In the first session, participants’ body movements were recorded using the Microsoft Kinect V2.0 149 

and Kinect SDK in a quiet testing room. Participants were instructed to perform the actions in a 150 
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rectangular space, in order to provide flexibility in how to perform the action, while remaining 151 

within recording distance. The Kinect was placed 1.5 m above the floor and 2.59 m away from 152 

the participant. Participants were instructed to naturalistically perform 12 actions as described 153 

above and recorded by our motion capture system. Participants signaled the start and stop of 154 

action performance by performing an outstretched T-Pose with their arms. Participant actions 155 

were then recorded and converted to point-light stimuli for use in the fMRI session.  156 

Each of the 20 participants also brought a close friend of the same sex, who was also 157 

separately recorded with the same paradigm. None of the participants were informed about the 158 

study’s purpose on self-recognition, but were informed that this study was about general visual 159 

action processing. We used the recordings of the close friend in the fMRI session to assess the 160 

impact of visual familiarity. After the recording session, participants completed a few attitudinal 161 

questionnaires including the Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001),  162 

Schizotypal Personality Questionnaire (SPQ; Raine, 1991), and Vividness of Motor Imagery-2 163 

(VMIQ-2; Roberts et al., 2008). These questionnaires were selected since they measure motor 164 

simulation ability (VMIQ-2) or disturbances in sensorimotor self-recognition (SPQ, AQ).  165 

  166 
[Fig 1.tif] 167 

 168 

 169 

fMRI session  170 

After a delay period of two to three weeks (mean delay days = 18.55, SD = 2.87), participants 171 

returned for fMRI brain imaging in Session 2 (trial structure depicted in Figure 1). During brain 172 

imaging, participants passively observed a point-light display consisting of 25 joints. These joints 173 

included the head (head, neck, clavicle; 3 dots), arm (biceps, elbows, wrists; 6 dots), hands 174 

(fingers; 6 dots), stomach (1 dot), hips (3 dots), knees (2 dots), leg (shin, feet; 4 dots).  Each 175 

point-light display either showed their own action (self), same-sex familiar friend, or same-sex 176 
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stranger action for a five second duration. The same-sex stranger was selected at random (out 177 

of two options) between participants. After the stranger was selected, this stranger was 178 

consistently used for all actions involved in the experiment for this participant. Following the five 179 

second observation of the action, participants were prompted to identify on the next screen 180 

whether the action video shown was their own, friend, or stranger within a two second maximum 181 

response period. Participants responded with their right hand by pressing one of three keys, 182 

having the index finger on the first, the middle finger on the second, and the ring finger on the 183 

third key. One identity was assigned to each key, and identity-key mapping was 184 

counterbalanced across subjects. Participants’ response was followed by jittered intertrial 185 

intervals (ITI) mean-centered at 5 seconds. There were four runs per participant, each 186 

consisting of 36 trials (12 trials per identity condition) in an event-related design. For each run, 187 

experimental conditions were pseudorandomized to reduce stimulus autocorrelation related to 188 

order and sequence effects as well as correlated noise, such as scanner drift. Response 189 

mapping of self/friend/stranger was randomized between participants to reduce effects of trial 190 

structure or motor preparation and planning demands. Duration of the experimental task during 191 

functional brain imaging was around 24 minutes. Total brain imaging duration lasted 192 

approximately 45 minutes.  193 

 194 

Experimental Design and Statistical Analysis 195 

 MRI Acquisition  196 

The Siemens 3-Tesla Prisma Fit scanner at the Staglin IMHRO Center for Cognitive 197 

Neuroscience was used for Magnetic resonance imaging, equipped with a 32-channel head coil. 198 

Structural data was acquired using a T1-weighted MPRAGE protocol (1.0 mm3 resolution; 199 

repetition time = 2000 ms). Functional data was acquired utilizing T2*-weighted Gradient Recall 200 

Echo sequence. Scanning parameters for the main task included: repetition time = 700 ms, echo 201 
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time = 33 ms, voxel size = 2.5 mm3 voxels, field of view = 192 mm, flip angle = 70°. Four dummy 202 

scans were acquired and discarded before each scan to account for scanner stabilization. 203 

Participants viewed the stimuli presented on a projector through a mirror mounted on the head 204 

cover in the scanner. Participants underwent four runs of 36 trials each. Each run lasted 205 

approximately 360 seconds.    206 

Imaging Analyses  207 

Univariate Analysis  208 

Statistical analyses were conducted using FEAT (FMRI Expert Analysis Tool) Version 6.00, part 209 

of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) using the GLM approach. Individual 210 

functional scans were coregistered to the high resolution structural image using boundary-based 211 

registration (Greve and Fischl, 2009). Registration of the high-resolution structural scan to the 212 

Montreal Neurological Institute (MNI) template was implemented using FSL’s FLIRT (Jenkinson 213 

2001, 2002) with 12 parameter DOF affine transformation. The following pre-processing steps 214 

were applied: motion correction using MCFLIRT (Jenkinson 2002); slice-timing correction using 215 

Fourier-space time-series phase-shifting; non-brain tissue removal using BET (Smith 2002); 216 

spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean scaling of the entire 4D 217 

dataset by a single multiplicative factor; high-pass temporal filtering (Gaussian-weighted 218 

leastsquares straight line fitting, with sigma=50.0s). Regressors were defined based on the 219 

onsets and durations of the three identities (self, friend, stranger) across all actions. Individual 220 

runs were aggregated into a mixed effects higher-level model using FLAME (FMRIB’s Local 221 

Analysis of Mixed Effects) stage 1 and stage 2 (Beckmann et al., 2003; Woolrich, 2004; 222 

Woolrich 2008) for both within-session single subject variance and between-session group level 223 

variance. Significance testing on the statistical parametric maps was then assessed at the group 224 

level using two approaches in FSL: (1) randomise with threshold-free cluster enhancement 225 

(TFCE) and p < .05 FWE-corrected (Winkler et al., 2014; Smith & Nichols, 2009), TFCE-p 226 
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threshold = .05 and (2) random-field (RFT) based thresholding at Z > 3.1, cluster corrected to a 227 

significance level of p < .05 (Worsley 2001). Randomise served as our main approach to 228 

significance testing given its more conservative, specific, and sensitive significance criteria 229 

(Smith & Nichols, 2009). All figures and tables generated from the parametric RFT analysis are 230 

reported in Extended Data 5-2, 5-4, 5-5. Conjunction analysis to localize self-specific activity 231 

was also implemented in FSL using the easythresh_conj script (easythresh_conj) on univariate 232 

activation maps for both self > stranger and self > friend contrasts (Nichols et al., 2005; Price & 233 

Friston, 1997). The conjunction specifically tested the “conjunction null hypothesis” as to 234 

whether both conditions showed significant functional activation  (Z > 3.1, p < .05), which were 235 

later used as seed regions in the connectivity analyses.  236 

Functional connectivity: Psychophysiological Interaction (PPI)  237 

To identify a neural circuitry prioritized for self-processing, we implemented PPI (Friston et al., 238 

1997) to assess task-specific changes in functional connectivity. PPI examines how the 239 

relationships between a seed region and voxels in other brain regions are modulated by the 240 

psychological state of the participant (task-dependent). The degree to which the seed regions 241 

and sink (other brain regions) vary as a function of the task, is measured by testing the 242 

significance of the β coefficient of the interaction computed between the experimental contrast 243 

vector and the sink region. As our analyses focused on identifying a self-action circuitry, we 244 

constrained our seeds to those determined by group-level functional activations in separate 245 

GLMs for the self (i.e., self > stranger or self > friend contrasts). We used a conjunction analysis 246 

implemented in FSL using the easythresh_conj script (easythresh_conj) on univariate activation 247 

maps for both self > stranger and self > friend contrasts. The seed region in the left IPL was 248 

generated from creating a sphere (8mm radius) around the peak functional activation for the 249 

conjunction of the self > stranger and self > friend contrasts (centered at peak center-of-gravity, 250 

x, y, z = -56, -44, 42). We initially focused on the IPL in the left hemisphere, since the TFCE 251 
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thresholding only produced left hemispheric activity in the IPL. However, to more 252 

comprehensively investigate IPL involvement during self-processing, we also conducted PPI 253 

with the right hemisphere IPL seed. The seed regions were each defined in standard space and 254 

resampled to match 2.5mm isotropic voxel resolution. The resampled masks were then inversely 255 

transformed to native space, applied with nearest neighbor interpolation. Time courses in the 256 

seed region were extracted using fslmeants (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils), which 257 

generated a vector of mean activity in the mask for each volume. This time course was then 258 

entered as the ROI time series regressor into the PPI GLM. Thus, the full GLM consisted of the 259 

interaction vector (PPI regressor), the main effects of the contrasts of interest (the psychological 260 

variables), and a vector representing the seed region time course (the physiological variable, Y 261 

regressor). At the group level, statistical parametric maps for the interaction term were 262 

thresholded (Z > 2.3, p <.01) to compute significance of the interaction term.  263 

 Representational Similarity Analysis  264 

Whole-brain representational dissimilarity analysis (RDA) (Haxby et al., 2014; Krieskegorte et 265 

al., 2008) was implemented using the CoSMoMVPA toolbox (http://www.cosmomvpa.org/; 266 

Oosterhof et al., 2016) and custom MATLAB scripts (R2020a). Regressors were defined based 267 

on the onsets and durations of the three experimental conditions (self-actions, friend-actions, or 268 

stranger-actions) during the action observation period of the task. Using the Least-Squares 269 

Separate approach, beta-series parameter estimates (Rissman, Gazzaley, & D’Esposito, 2004; 270 

Mumford et al., 2012) were iteratively estimated per trial by modeling a regressor for the event of 271 

interest in the trial and a regressor for all other events within the run. Standard motion 272 

parameters were also included as regressors in each GLM. Preprocessing was identical to the 273 

univariate analysis, but no smoothing was applied. We generated multiple target 274 

representational dissimilarity matrices (RDM)s based on differences related to spatiotemporal 275 

movement distinctiveness (dynamic time warping), speed, acceleration, jerk, body structure 276 
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consisting of limb segment length, and a theoretical RDM based on proprioceptive familiarity. To 277 

generate neural RDMs for each participant, we extracted 36 beta weights for each run, 278 

normalized each beta weight within run, computed the average for each of the 36 action targets 279 

across all runs, and then demeaned the data (i.e., subtraction of the grand mean of all averaged 280 

targets from each averaged target). All RDMs (behavioral, theoretical, and neural) were square, 281 

symmetric, and reflected the pairwise dissimilarity between each element in the matrix. Each 282 

RDM (proprioceptive familiarity, identity, movement distinctiveness, speed, acceleration, jerk, 283 

body structure) was either correlated separately with neural activity (standard RDA) or entered 284 

as input into a multiple regression RDA with other RDMs. The RDMs in the multiple regression 285 

analysis included a subset of the prior RDMs:  proprioceptive familiarity and identity (self, friend, 286 

or stranger), and visual feature-based models related to movement distinctiveness (DTW), and 287 

speed. Each RDM was z-transformed prior to estimating the regression coefficients in the 288 

multiple regression analysis.  289 

For the whole-brain searchlight RDA, each searchlight window was defined by a 290 

Gaussian sphere of 2-mm radius. Each spherical searchlight included every voxel in the brain, 291 

along with neighboring voxels within the window. The standard searchlight RDA was 292 

implemented through correlating the target RDM with neural RDM in each searchlight across the 293 

whole-brain. The correlations were then Fisher-z transformed and mapped to the center of each 294 

searchlight to create individual similarity maps in native space as inputs to the higher-level 295 

nonparametric analyses. For the multiple regression searchlight RDA, a multiple regression 296 

analysis was conducted in each searchlight across the whole-brain. For each participant in 297 

native space, the betas were mapped to the center of each searchlight to create individual 298 

similarity maps for each predictor as inputs to the higher-level non-parametric analyses. All 299 

individual maps were normalized to the MNI-152 template using FSL’s FLIRT functionality 300 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) using trilinear interpolation for group-analysis. One-301 

sample t-tests were computed at the group level, correcting for multiple comparisons using 302 
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permutation-based threshold-free cluster enhancement with a corrected threshold of p < 0.01 303 

(Smith and Nichols, 2009) with 10,000 Monte Carlo Simulations.  304 

   305 

  306 
 307 

 308 

  309 

[Fig 2.tif] 310 

 311 

 312 

Target Representational Dissimilarity Matrices:  313 

Shown in Figure 2, we constructed the following representational dissimilarity matrices used as 314 

predictors for both standard and multiple regression representational dissimilarity analyses:  315 

Movement Distinctiveness. The behavioral RDM for movement distinctiveness was generated 316 

using the dynamic time warping (DTW) algorithm to compare trajectory differences between a 317 

pair of actions. DTW measures the pairwise movement dissimilarity between action time series 318 

via an alignment procedure that accounts for variability in time series length or duration. DTW 319 

aims to find the lowest cost function (warping path) between pairwise action time series that 320 

stretches or shrinks the time series to reflect warped distances. Greater DTW values indicate 321 

greater movement dissimilarity between joint trajectories. A 36 x 36 RDM was created for each 322 

participant that computed the pairwise DTW dissimilarity between each of the 12 actions across 323 

each identity (self, friend, stranger). The following steps were implemented for Dynamic Time 324 

Warping (DTW) analysis in MATLAB R2020a:  325 

(1) For each participant’s actions, 3D positions of each of the 25 joints were extracted using 326 

the BioMotion toolbox (van Boxtel & Lu, 2013).  327 

(2) Each joint trajectory was centered to zero in order to remove the impact of global factors 328 

(e.g., global body displacements, limb length, etc.) on the similarity measures.  329 
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(3) The action DTW algorithm (Pham, Le, & Le, 2014) was implemented to search for a 330 

temporal warping function shared across all 25 joints.   331 

(4) After deriving the optimal warping function, the analysis computed the frame-by-frame 332 

Euclidean distances of the temporally warped joint trajectories in actions performed by 333 

different actors.  334 

(5) DTW distance was computed as the sum of the distances between all joint trajectories 335 

normalized by the number of frames of a target actor. This normalization step is required 336 

to account for the different durations across participants performing the same action.  337 

(6) For each participant, the dissimilarity of the target participant performing an action from 338 

all other identities was captured by a mean DTW distance measure, computed by 339 

averaging across pairwise DTW distances between the target participant with the other 340 

actors (friend, stranger) in performing this action to construct the 36 x 36 341 

representational dissimilarity matrix (RDM).  342 

Speed, Acceleration, and Jerk Differences. To measure the contribution of movement speed 343 

to self-recognition, we calculated a speed distinctiveness value for every participant’s individual 344 

action in MATLAB R2020a. For each action, we computed the average 3D positional 345 

displacement across all frames and all 25 joints (using the first-order derivative of position) 346 

extracted from Biomotion Toolbox (Van Boxtel & Lu, 2013). We then computed the average 347 

pairwise Euclidean distance to all other identities and actions as a measure of speed 348 

distinctiveness to construct the 36 x 36 RDM. Acceleration and jerk were identically computed, 349 

though taking the first and second derivative of speed respectively.  350 

Body Structure (postural limb length). The body structure RDA was computed based on the 351 

limb length of each of the 24 limbs (for 25 joints) of the PLD. Limb length was computed using 352 

the 3D Euclidean distance between pairs of joints that made up each limb in the PLD. Pairwise 353 
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absolute value dissimilarities were then calculated across participants for each limb and 354 

averaged together across all limbs to comprise the 36 x 36 target RDM.  355 

Motor familiarity. We computed a simple theoretical RDM based on the theorized motor 356 

familiarity between each of the identities. This was based on common coding theory (Prinz, 357 

1997), which posits a common representational platform and shared overlap between visual and 358 

motor codes. Thus, identity for the self was coded as 0 (most familiarity due to prior motor 359 

experience; least dissimilarity). We coded friend as 0.6 to capture the low-medium level of 360 

familiarity, since participants had a high degree of visual familiarity with the friends’ actions, 361 

translating to a small degree of motor familiarity. Note that the specific value of 0.6 was not 362 

critical, as the main findings (as described in the results section) remained for a range of 363 

possible values. Since common coding theory posits shared or overlapping visual and motor 364 

codes, repeated visual exposure to friends’ actions could establish partial motor simulation, 365 

where repeated observation of common movements of familiar friends activates motor circuits 366 

even without direct execution of those actions (Rizzolatti and Craighero, 2004; Gallese 2006). 367 

This would account for stronger neural encoding seen for friends' actions compared to 368 

strangers. Hence, stranger was coded as 1 for all actions (no familiarity; most dissimilarity). 369 

Within self-identity, we further weighted the actions by their motor familiarity. Specifically, 370 

actions that were more motorically familiar to participants due to freely performing the action and 371 

self-generating the motor plan (i.e., via verbal instruction) were coded as most similar (0). 372 

Actions that involved copying someone else’s motor plan (i.e., imitated via visual instruction) 373 

were coded as less familiar (.3). All other identities (friend, stranger) were computed equally 374 

similar across actions (friend coded as 0.6, stranger coded as 1). Thus, dissimilarity was 375 

computed between identities and weighted by motor familiarity to comprise the 36 x 36 376 

theoretical RDM.  377 
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Identity: Self (motor familiarity), Friend (visual familiarity), or Stranger. We also computed 378 

theoretical RDMs specific to identity for either self actions, friend actions, or stranger actions. 379 

For each identity RDM, the identity of interest (e.g., self) was coded as 0 (most similar), while 380 

the other two identities (e.g., friend, stranger) were coded equally as dissimilar (1). Dissimilarity 381 

was only computed between identities (and not individual actions) to comprise 36 x 36 382 

theoretical RDMs for each identity (self RDM, friend RDM, or stranger RDM).   383 

Results  384 

 Identity recognition from sparse actions  385 

First, we examined whether self-recognition was possible in visually sparse point-light displays. 386 

We found that participants could discriminate all identities (self, friend, stranger) significantly 387 

above chance (.33), self: M = .563, SD = .180, t(19) = 5.789, p < .001, cohen’s d = 1.29; friend: 388 

M = .483, SD = .182, t(19) = 3.754, p = .001, d = .839; stranger: M = .5052, SD = .172, t(19) = 389 

4.554, p < .001, d = 1.01 (Figure 3).   390 

 391 

 392 

 393 

[Fig 3.tif] 394 

 395 

 396 

 397 

 398 

 399 

Recognition of self-generated actions (M = .563, SD = .180) was significantly higher than 400 

friends’ actions (M= .483, SD = .182), t(19) = 2.673, padj = .049, d = .598, but not significantly 401 

higher than correctly identifying strangers’ actions (M = .505, SD = .172), t(19) = 1.353, padj = 402 
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.192. Self-recognition accuracy was also modulated by motor planning, revealed by a significant 403 

interaction effect between action type and identity F(2,19) = 7.546, p = .002, ηp
2 = .284. 404 

Specifically, actions that were generated by one’s own motor plan (i.e., verbally instructed; M = 405 

.615, SD = .198) were better recognized relative to actions that were performed by copying 406 

someone else’s motor plan (visually instructed,  M = .513, SD =.189), t(19) = 3.170, padj = .049, 407 

d = .709. This behavioral result supports the hypothesis that motor processes are involved in 408 

self-recognition. Motor planning did not modulate recognition accuracy for any of the other 409 

identities, friends t(19) = .340, p = .999, nor strangers, t(19) = -2.195, p = .285. All post-hoc 410 

comparisons were corrected using Tukey’s HSD.  411 

As shown in the top panel of Figure 3, self-recognition was greatest for the stretch action 412 

(M = .788, SD = .412) and lowest for digging (M = .375, SD = .487). Across all actions, no 413 

relationships were found between self-recognition accuracy and distinctiveness related to speed 414 

(p = .747), acceleration (p = .380), postural length (p =.410), or movement dissimilarity (p = 415 

.174). These results confirm that action identity could be distinguished in the sparse visual 416 

displays, with an advantage for actions generated with one’s own motor plan.   417 

  418 

 Action Observation Network is recruited for identity recognition  419 

Our main goal was to examine the neural mechanisms underlying self-recognition from whole-420 

body movements. To do so, we first compared neural activity for each identity (self, friend, 421 

stranger) relative to baseline. We found bilateral recruitment of the action observation network 422 

for all identities (overlayed in MNI space Fig 4). The activity spanned regions classically found in 423 

visual neuroscience, including the posterior superior temporal sulcus (pSTS) (right: x,y,z = 56, 424 

42, 10, left: x,y,z = -52, -50, 10) and lateral occipital cortices, including extrastriate body area 425 

(EBA) (right x,y,z = 44, -60, 10; left x,y,z, =-51, -69, 10),+ as well as regions with motor properties 426 

also described in the action observation literature (Rizzolatti & Craighero, 2004; Bonini et al., 427 
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2022), including the bilateral supplementary motor areas (right x,y,z = 12, 6, 56; left x,y,z = 4, -8, 428 

52), premotor cortices (right x,y,z = 39,1,53; Left x, y, z = -45, 2, 50), inferior frontal gyri (IFG) 429 

(right x,y,z = 50, 15, 10; left x,y,z = -55, 16, 10), and inferior parietal lobules (IPL) (right x,y,z = 430 

50, -40, 14; left x,y,z = -56, -44, 11).   431 

 432 

 433 

 434 

[Fig 4.tif] 435 

 436 

 437 

 438 

 439 

 A frontoparietal network for self-action processing  440 

Though visual and motor systems were involved during action observation of all identities, we 441 

expected greater activity in motor regions when participants observed their own actions, since 442 

self-generated actions are privileged by prior motor experience. According to common coding 443 

theory, vision and proprioception share a degree of functional equivalence, such that action 444 

recognition is facilitated by a matching process between these modalities (Prinz 1997; Hommel 445 

et al., 2001).  446 

Since visual and proprioceptive codes are most closely matched when observing our 447 

own actions relative to observing actions of others, self-recognition should be facilitated in brain 448 

regions with motor properties that are also active during action observation (e.g., Knoblich and 449 

Flach, 2004; Limanowski and Blankenburg, 2016; Abdulkarim et al., 2023). Indeed, both self 450 

contrasts of interest (self > stranger and self > friend) uniquely evoked greater activity in 451 

frontoparietal regions with these properties. For self > stranger, activity was localized to the left 452 

posterior supramarginal gyrus (peak x, y, z = -62, -48, 28) into the angular gyrus, as well as the 453 

left insular cortex and the inferior frontal gyrus, pars opercularis (x,y,z = -42, 10, -8) (Figure 5). A 454 

few small clusters in the anterior cingulate cortex (ACC) (x,y,z = -2, 20, 18; x,y,z = 4, 14, 28) and 455 
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one small cluster in the right insular cortex (x,y,z =  40, 10 ,-2) were also observed. Self > friend 456 

similarly recruited the left posterior SMG of the IPL (x,y,z = -54, -50, 30), spanning the angular 457 

gyrus (Figure 5, right panel). For friend > stranger and stranger > friend, FSL’s randomise 458 

approach did not yield significant activity. All peak clusters from the analyses are reported in the 459 

Extended Data Tables 5-1, 5-2, and 5-3.  460 

 461 
[Figure 5.tif] 462 

 463 
 464 
 465 
Coactivation in these regions does not necessarily implicate a network for self-processing. Thus, 466 

we further measured network-related activity during self-processing using task-based functional 467 

connectivity (PPI; Friston et al., 1997). The bilateral IPL (peak sphere from the group-level 468 

conjunction maps for self-processing: left: x, y, z = -56, -44, 42; right: 54, -38, 40) was set as 469 

seed regions in separate PPIs, due to the important role of the IPL in motor simulation and hub 470 

status in action processing.  471 

We found very similar results across both hemispheric seeds. For both seed regions, we 472 

observed strengthened frontoparietal and parieto-visual connectivity for the self-processing 473 

contrasts (self > stranger and self > friend). The left IPL seed for self > stranger showed the 474 

greatest peak connectivity between parieto-visual regions: the right lateral occipital cortex (x, y, 475 

z = 54 -50, -2), and the left occipito-temporal fusiform area (x, y, z = -52, -70, -12). We also 476 

found strengthened frontoparietal connectivity, specifically with the bilateral inferior frontal 477 

cortices (left x, y, z = -54, 16, 30; right  x, y, z = 46, 18, 20), as well as bilateral intraparietal 478 

sulcus spanning the somatomotor cortex (left  x, y, z = 26, -50, 44, right  x, y, z = 32, -36, 44)  479 

(Figure 6).  For the right IPL seed, we found similar connectivity patterns to the left. For self > 480 

friend with the right IPL seed, we found the greatest frontoparietal functional connectivity, 481 

between the right IPL and the bilateral inferior frontal cortex (x,y,z =-36, 30, 34), extending from 482 
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the middle frontal gyrus to the IFG pars opercularis, and spanning the primary motor cortex and 483 

premotor cortex. Additional activity was found in the right pre-SMA (x,y,z = 4,12,58) as well as 484 

bilateral occipotemporal regions, with peaks in the right occipital-temporal cortex (x,y,z = 46, -485 

56, -2) and left superior temporal sulcus  (x,y,z = -62, -50, 8). For self > stranger, we observed 486 

strengthened parieto-occipitotemporal activity, with peaks in the left lateral occipito-temporal 487 

cortex (x,y,z = -46, -68, 12), and right fusiform area (x,y,z = 42, -40, -20). Additionally, we found 488 

strengthened connectivity with the frontal lobe, with peaks in the bilateral inferior frontal cortex, 489 

spanning the premotor and primary motor regions. No activity was found for friend > stranger. 490 

All activity maps were cluster corrected at Z > 2.3, p < .01.  491 

 492 

[Figure 6.tif] 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 
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 510 

 511 

 512 

 513 

 514 

 515 

Table 1. PPI results with bilateral IPL seeds  516 

Region Contrast Hemisphere Area MNI (x,y,z) Max Z Cluste

r Size 

p 

Left IPL               

  Self > 

Stranger 

Right Fusiform 

Area 

54, -50, -2 4.09 2265 <.0001 

    Left Fusiform 

Area 

-52, -70, -

12 

4.09 1660 <.0001 

    Right IFC 46, 18, 20 4.05 1537 <.0001 

    Left IFC -54, 16, 30 4.01 1932 <.0001 

      IPS 32, -36, 44 3.56 807 <.0001 

      IPS -26, -50, 44 3.74 1142 <.0001 

  Self > 

Friend 

Right IFC 50, 14, 44 3.83 629 <.0001 

    Left IFC -50, 26, 28 3.69 1216 <.0001 

    Right Fusiform 

Area 

42, -60, -10 3.93 1154 <.0001 

    Left Fusiform 

Area 

-48, -50, -

20 

3.57 401 .003 

    Left Middle 

Temporal 

-60, -50, 4 4.02 609 <.0001 

Right IPL               

  Self > 

Stranger 

Left LOC -46, -68, 12 3.91 1418 <.0001 

    Right Fusiform 

Area 

42, -40, -20 3.57 1248 <.0001 

    Right IFC 38, 30, 20 3.58 885 <.0001 

    Left IFC -44, 12, 28 3.63 703 <.0001 
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    Left STS -62, -50, 8 3.57 781 <.0001 

    Right Pre-SMA 4,12, 48 3.78 576 <.0001 

    Right OTC 46, -56, -2 3.32 482 .00031 

    Left MFG -36, 30, 34 3.43 415 .00111 

 517 

 Evaluating a visuomotor representational space for self-processing  518 

Based on the strengthened frontoparietal connectivity for self-processing, the analysis below 519 

focused on underlying representational structure. Specifically, we examined the extent to which 520 

self-recognition relied on factors that resembled motor familiarity, while accounting for visual 521 

signatures of the actions across the whole-brain using multiple regression RDA. We opted for 522 

whole-brain analyses since frontoparietal regions often comprise multiple brain networks (e.g., 523 

action observation network, central executive network), and since additional regions associated 524 

with motor functions also encode self-processing. If self-recognition relies on motor 525 

mechanisms, then encoding patterns may further span other regions associated with motor 526 

properties, such as the somatomotor cortex. Thereafter, we conducted four multiple regression 527 

RDAs for the following predictors of interest: (1) motor familiarity and (2) for each identity: (2a) 528 

self, (2b) friend, or (2c) stranger in separate regression models, accounting for visual features 529 

related to speed or movement distinctiveness.  530 

Multiple Regression Motor Familiarity RDA: somatomotor cortex and occipitotemporal regions  531 

The motor familiarity representational dissimilarity matrix was computed based on the theorized 532 

motor familiarity between each of the identities (self as most motorically familiar, friend as 533 

medium, and stranger as least). Within self-identity, we further weighted the actions by their 534 

degree of motor familiarity. Actions that were most motorically familiar to participants due to self-535 

generating the motor plan were coded as most similar. Actions that involved copying someone 536 

else’s motor plan (i.e., imitated via visual instruction) were coded as less familiar.  537 

JN
eurosci

 Acce
pted M

an
uscr

ipt



23  

Shown in Figure 7, we found robust encoding in the somatomotor, frontoparietal, and 538 

lateral-occipital cortices. Specifically, the motor familiarity multiple regression RDA (accounting 539 

for differences in speed and movement distinctiveness) revealed the largest pattern of encoding 540 

in the bilateral primary motor cortex (M1), spanning the primary somatosensory cortex (S1), and 541 

showed stronger representation in the left hemisphere (left peak x,y,z =  -46, -22, 50) than right 542 

(right peak x,y,z = 52, 1, 34). Activity patterns were also found in fronto-parietal regions, 543 

including inferior parietal (right peak x,y,z: 54, -36, 36, left peak x,y,z:  46, -66, 34), and a large 544 

cluster spanning the anterior cingulate, mid-superior frontal areas, and supplementary motor 545 

areas (right peak x,y,z = 11, 50, 17; left peak x,y,z = -18, 3, 41). Activity patterns were also 546 

observed in the occipital and lateral-occipital regions, extending into the bilateral lingual gyrus, 547 

precuneus, cuneus (right peak x,y,z = 22, -61, -2). These results together reveal a gradation of 548 

encoding in motor-related regions using identity-based motor familiarity. Specifically, motor-549 

related brain regions were most strongly encoded when viewing self-generated actions, followed 550 

by friend, and followed by stranger. An exhaustive table of all activity patterns is reported in 551 

Extended Data Table 7-1.  552 

 553 

 554 

[Fig 7.tif] 555 

 556 

 557 

Multiple Regression Identity RDAs: stronger representation in somatomotor cortex and mPFC 558 

We then measured whether the representational encoding found in these regions was 559 

specialized for self-identity. We compared activity patterns generated from multiple regression 560 
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RDAs that specified self-actions as the predictor of interest, as compared to multiple regression 561 

RDAs for each other identity (friend, or stranger).  562 

The self-identity RDA generated the largest activity patterns in the bilateral somatomotor 563 

regions, with its peak in the left hemisphere (left peak x,y,z = -30,-23,57) and visually identified 564 

in the right hemisphere (right peak x,y,z = 40, -12, 50) (Figure 8). We also found large activity 565 

patterns in frontoparietal regions, spanning the IPL (left peak x,y,z = -37,-64,40; right peak x,y,z 566 

= 60,-36,27), supplementary motor area (left peak x,y,z = -8,-7,58, right peak x,y,z = 11,15,58), 567 

and lateral to medial-prefrontal cortices (peak x,y,z = 46,50,4) for the self-identity multiple 568 

regression RDA. These results suggest that the somatomotor and frontoparietal regions–569 

associated with motor simulation–primarily encoded self-actions relative to actions of others. 570 

Further, the strength of encoding in the somatomotor and frontoparietal cortices systematically 571 

degraded as a function of identity. Specifically, the friend RDA produced less encoding, and the 572 

stranger RDA produced no significant encoding in these regions. Activity patterns were also 573 

most visually distributed for the self, followed by friend, and followed by stranger (examined at a 574 

reduced threshold, p<.05). 575 

Additional activity patterns unique to self-identity were also found in bilateral 576 

parahippocampal gyri (left peak x,y,z= -16,-13,-20, right peak x,y,z= 32,-28,-4), with much 577 

smaller activity patterns found in the left occipital pole (left peak x,y,z= -23,-98,-14), bilateral 578 

temporal pole (right peak x,y,z= 46,4,-33, left peak x,y,z= -32,-39,16), thalamus (peak x,y,z = 579 

14,-22,18), and precuneus (peak x,y,z= 8,-38,6). For the friend RDA, the activity patterns were 580 

noticeably sparser and largely overlapped with self-identity, but mostly constrained to the 581 

cortical midline. These regions spanned the precentral gyri, SMA, IPL, insula (peak x,y,z = -46, -582 

30, 23), the left calcarine and occipitotemporal regions (peak x,y,z =-16, -61, 16), and thalamus 583 

(peak x,y,z =-8, 34, -0). For the stranger RDA, only sparse activity patterns were found in visual 584 

regions: right middle temporal gyrus and occipitotemporal cortex (peak x,y,z = 62, -47, 6) at a 585 
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reduced threshold (Z > 1.96). See Extended Data (Tables 8-1, 8-2, 8-3) for an exhaustive report 586 

of all clusters from all RDAs, visually depicted in Figure 8. 587 

 588 
[Fig 8.tif] 589 

 590 
Table 2. Number of voxels in regions of interest for each main identity RDA. Table depicts a 591 
parametric degradation in activity pattern encoding in somatomotor and frontoparietal regions as 592 
a function of person-identity.  593 
 594 

Area Self Friend Stranger 

Somatomotor 5675 1843 0 

Frontoparietal       

IPL 2383 913 2 

SPL 1192 481 0 

IFG 860 322 0 

INS 740 198 0 

 595 
Abbreviations: IPL (Inferior Parietal Lobule); SPL (Superior Parietal Lobule); IFG (Inferior Frontal Gyrus); 596 
IS (Insular Cortex). Number of voxels calculated within region of interest (ROI) masks generated from 597 
Harvard-Oxford Cortical Atlas for each identity RDA map (self, friend: ps < 0.01, and stranger: p < 0.05). 598 
Somatomotor mask was generated by combining precentral and postcentral gyri masks. IPL mask 599 
determined by the combination of parietal operculum, angular gyri, and supramarginal gyri (anterior and 600 
posterior) masks, subtracting occipito-temporal overlap (medial temporal gyri and lateral occipital cortices). 601 
IFG mask determined by combination of IFG pars triangularis and IFG pars opercularis masks. Insula 602 
mask determined by subtracting IFG mask from Insula ROI. 603 
 604 

Finally, to account for any effect of motor planning of the button responses producing the 605 

large motor cluster in the left-hemisphere for the self-RDA, we conducted an additional RDA for 606 

self-identity that included the timing of the motor responses as a covariate in the multiple 607 

regression analysis. The results maintained the original findings of the self-RDA. Specifically, 608 

the largest cluster from the RDA was observed in the left somatomotor cortex (left peak x,y,z =-609 

42, -20, 46), and preserved the main findings. See Extended Data (Table 9-1) for an exhaustive 610 

report of all clusters from the RDA, visually depicted in Figure 9. 611 

 612 

[Figure 9.tif] 613 

 614 
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Combined with results from the motor familiarity RDA, these findings lend support to 615 

motor simulation accounts. Self-processing, due to its high degree of motor familiarity, would be 616 

expected to have the strongest degree of motor simulation during action observation, reflected 617 

by the largest activity patterns in motor-related regions, followed by friend, then stranger. This 618 

aligns with prevalent accounts suggesting that action observation of others involves an internal 619 

simulation of the action onto our own motor systems (e.g., Rizzolatti & Craighero, 2004; 620 

Iacoboni, 2008).  621 

  622 

 Discussion  623 

Our study investigated the neural correlates for self-recognition of our whole-body movements. 624 

On functional brain imaging data, we report that merely observing our whole bodies in motion 625 

evokes greater activity in neural systems traditionally construed as having motor functions, in 626 

comparison to observing the actions of others.  627 

While boundaries between visual and motor functions have been increasingly blurred 628 

over the last few decades of systems neuroscience research, traditionally frontoparietal areas 629 

are mostly conceived as having motor functions, whereas occipito-temporal areas are typically 630 

construed as involved in visual processing. Here, we found that both areas were involved in 631 

action observation of all identities. However, unique to self-action observation, we observed 632 

greater activity and functional connectivity of frontoparietal regions (left inferior parietal lobule; 633 

IPL and inferior frontal cortex; IFC), functionally connected to occipito-temporal regions. Note 634 

that significance for all univariate subtraction contrasts was assessed using non-parametric 635 

threshold-free cluster enhancement (TFCE), as TFCE has been shown to be more sensitive yet 636 

less prone to false positives in the literature (Smith & Nichols, 2009). This resulted in left-637 

lateralized activity for self-processing. However, bilateral involvement of these regions was 638 

clearly observed when using FSL’s standard RFT cluster correction (Z > 3.1, p < .05) as well as 639 
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in our multivariate analyses. To avoid false positives, we interpret the non-parametric results, 640 

but do not make strong claims on observed laterality.  641 

Action simulation accounts posit a central role of the motor system during action 642 

observation (Gallese & Goldman, 1998; Rizzolatti & Sinigaglia, 2010). The degree of motor 643 

experience with actions is thought to parametrically modulate activity in these frontoparietal and 644 

motor regions during action observation (even across modalities, e.g., Kaplan et al., 2008; 645 

Kirsch and Cross, 2015; Blakemore & Frith, 2003). Since self-generated actions benefit from 646 

prior motor experience, action simulation could be one candidate mechanism for the increased 647 

activity and connectivity in these regions. However, these regions, notably frontoparietal, also 648 

support functions beyond action simulation, including working memory (Baddeley, 2003), 649 

cognitive control (Corbetta & Shulman, 2002), and multisensory integration (Macaluso & Driver, 650 

2005). While we are unaware of any direct links between cognitive control and self-recognition 651 

on a visual perception task—multisensory integration, particularly in the IPL, could be an 652 

important mechanism to facilitate self-action recognition by combining visual and proprioceptive 653 

information. Similarly, working memory could facilitate retention of the action in order to 654 

differentiate identity, implicating the intraparietal sulcus and numerous occipitotemporal regions 655 

(Woźniak et al., 2022). 656 

It is important to note that merely observing actions may not veridically engage the same 657 

cognitive and neural resources associated with action simulation. For instance, while action 658 

observation can engage sensorimotor areas, it may not trigger the same internal model 659 

mechanisms that would predict somatosensory attenuation during action production, as 660 

expected in action simulation accounts (Kilteni et al., 2021). Conversely, other processes such 661 

as motor imagery, can engage these mechanisms (Kilteni et al., 2018). Hence, we do not make 662 

strong claims on positing the functional mechanism associated with these areas, but highlight 663 

action simulation as one possible candidate. 664 
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 Strengthened connectivity was also observed between the bilateral IPL and the inferior 665 

frontal cortex (IFC) anterior to the premotor cortex, during self-action recognition. Action 666 

simulation accounts often implicate both the IFC and IPL, two anatomically and functionally 667 

connected areas. Other proposals suggest that anterior parcellations of the IFC might be locally 668 

involved in abstracted aspects of action understanding, such as goal selection, intention 669 

inference, and semantic understanding (e.g., Liakakis et al., 2011). During self-action 670 

recognition, the IFC (including its more anterior portions) could support the integration of action 671 

observation with higher-order cognitive processes. Information flow may originate from 672 

strengthened parieto-occipitotemporal functional connectivity during action processing, then 673 

passed onto the IFC (in both anterior and posterior IFG in our data) for more conceptual action 674 

understanding.  675 

Our results also highlight the role of parieto-occipitotemporal regions in action 676 

observation. These regions may distinguish fine-grained visual features that facilitate 677 

discrimination between identities. Together with the IPL and the IFC (e.g., Kilner, 2011), this set 678 

of areas may form an expanded action observation network for self-recognition. That is, 679 

occipital-temporal regions first decode coarse visual identity based on low and mid-level action 680 

features (including for person perception in the superior temporal sulcus, Isik et al., 2017), while 681 

frontoparietal regions may process self-actions at a deeper motoric, proprioceptive, and 682 

conceptual level (e.g., Rizzolatti et al., 2014; Rizzolatti & Craighero, 2004).  683 

In addition to frontoparietal and occipitotemporal regions engaged during self-action 684 

observation, the multivariate results revealed largest activity patterns in bilateral somatomotor 685 

regions. Activity in these regions for both the motor familiarity and self-identity representational 686 

(dis)similarity analyses (RSA)s spanned the primary motor, primary somatosensory, 687 

supplementary motor areas, and the premotor cortices. Further, the strength of encoding in the 688 

somatomotor and frontoparietal cortices systematically degraded as a function of identity. These 689 
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regions most strongly encoded self-identity, moderately encoded friend-identity, and did not 690 

encode stranger-identity, which instead revealed activity patterns in primarily occipito-temporal 691 

regions. The relatively parametric degradation of somatomotor and frontoparietal encoding as a 692 

function of person identity lends further support to action simulation accounts.  693 

While neural activity in these frontoparietal and somatomotor regions is often implicated 694 

in motor production (e.g., Muir and Lemon, 1983) as well as control, attention, and working 695 

memory processes as noted earlier, these regions are often functionally implicated in tasks 696 

involving action simulation, including action observation (Gallese & Goldman, 1998; Keysers 697 

and Gazzola, 2010), motor imagery (Schnitzler et al., 1997; Ehrsson et al., 2003; Porro et al., 698 

2000; Pilgramm et al., 2016; Pfurtscheller & Neuper, 1997), action prediction (Lamm, Fischer & 699 

Decety, 2007; Blakemore and Frith, 2003), motor memory (Romo et al., 2012), and motor 700 

planning (Gale et al., 2021). Moreover, coactivation in both premotor and posterior parietal 701 

areas appears to depend on the match between motor and visual information that facilitates 702 

one’s sense of body ownership (e.g., Abdulkarim et al., 2023). The greater match between 703 

common visual and proprioceptive codes may provide the increased sense of bodily awareness 704 

needed to facilitate self-recognition. This is reflected by the greater signal encoding in these 705 

regions for the self, which degraded by visuomotor person familiarity (i.e., less for friend, none 706 

for stranger). 707 

The RSA results also revealed that the neural encoding was most distributed for self-708 

identity, followed by friend, and least for stranger, where it was primarily localized to occipito-709 

temporal regions. A substantial body of research suggests that self-processing generally 710 

engages systems-wide and distributed activity compared to processing other identities (e.g., 711 

Molnar-Szakacs & Uddin, 2013; Turk et al., 2003; Yeshurun et al., 2021). Indeed, at the 712 

network-level, self-processing involves strong interactions between both low-level feature-based 713 
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processing, and higher-level conceptual processing, facilitating a sense of identity due to the 714 

wealth of information we have stored about our own identities (Molnar-Szakacs & Uddin, 2013).  715 

Results from the self-identity RSA also revealed distributed encoding patterns in other 716 

regions (see Extended Data Table 8-1). The activity patterns spanned regions traditionally 717 

associated with mentalizing (Frith & Frith, 2006) and higher-order reflective and conceptual self- 718 

and other-processing, including the bilateral posterior cingulate cortex, medial (and lateral) 719 

prefrontal cortex, bilateral hippocampus, and the precuneus. These regions not only engage 720 

during mentalizing for others, but also for conceptual mentalizing about oneself (Lombardo et 721 

al., 2010; Qin and Northoff, 2011), and conscious awareness of oneself (e.g., Tacikowski et al., 722 

2017). Well-known action frameworks (e.g., Keysers and Gazzola, 2007) characterize a degree 723 

of dynamic connectivity between simulative motor representations and abstracted, self-reflective 724 

judgments. It is possible that these regions may store action representations in memory, or 725 

motor schemas, which are later accessed as a comparison to the visual consequence during 726 

action observation (Schmidt, 1975; Arbib 1981; Arbib, 1992). That is, rather than identifying 727 

one’s body based solely on visual cues that we generally lack access to in daily life, we may 728 

access stored proprioceptive schemas at a more abstract level of processing (i.e., “remembered 729 

selves”; Neisser, 1988) that interact with action observation to facilitate the visuo-proprioceptive 730 

match needed for self-recognition.   731 

Finally, a cluster of activity in the anterior cingulate cortex (ACC) was also observed in 732 

the RSA as well as a small cluster during the univariate task contrast of self > stranger actions. 733 

While ACC engagement may be due to multiple reasons given the many functional processes it 734 

has been associated with, a key account of ACC function is related to cognitive conflict (Braver 735 

et al., 2001). Prior research has shown that the ACC is involved in discriminating one’s own 736 

touch from an external touch, with the activity linked to the conflict between expected and actual 737 

sensorimotor feedback (Blakemore et al 1998; Kilteni et al 2024; Stetson et al 2006). There may 738 

be a similar conflict mechanism here when participants merely view their own and other people’s 739 
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actions. The brain has well-established representations of self-generated actions, and viewing 740 

these actions might generate conflict between the internal sensorimotor expectations and the 741 

stimulus-driven visual feedback during action observation. This conflict should be less 742 

pronounced, or even absent when viewing others' actions, since the internal sensorimotor 743 

predictions for others’ actions are less accessible.  744 

In summary, our three main analyses— univariate, functional connectivity, and RSA— 745 

converge on a cortical ensemble of visuomotor regions, spanning frontoparietal, somatomotor, 746 

and occipito-temporal areas, that seem prioritized for self-recognition of whole-body actions. 747 

These regions, notably frontoparietal and somatomotor cortices, are often linked to simulative 748 

motor functions during action observation, which may provide a functional explanation for the 749 

increased motor-related activity we observed. Our findings together reveal an important 750 

contribution of motoric indices to human self-awareness, helping to facilitate the basic 751 

differentiation between ourselves and others.  752 
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Figure captions 1318 

 1319 

Fig 1. Trial structure including timing. Participants centrally attended to a white fixation cross 1320 

until the action (self/friend/other) appeared for 5 s. On a subsequent screen, participants were 1321 

then provided 2 s to make their identity judgment, followed by the variable ITI (mean-centered at 1322 

5 s). The response order of self, friend, other was counterbalanced in order to reduce any impact 1323 

of motor order.  1324 

 1325 

 1326 

Fig 2. Left Panel: Representational (dis)similarity matrices (RDMs) used for each 1327 

representational dissimilarity analysis averaged across participants. RDMs reflect the Euclidean 1328 

distance between identity and action categories for speed, movement distinctiveness and body 1329 
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structure. For motor familiarity, identity was based on the degree of motor dissimilarity to oneself 1330 

(self-generated actions, i.e., verbal instruction: zero dissimilarity; self-imitated actions, i.e., visual 1331 

instruction: small dissimilarity, 0.3; friend actions: medium dissimilarity, 0.6; strangers: most 1332 

dissimilarity, 1). Brighter colors for all RDMs indicate more dissimilarity. Top Right Panel: Upper 1333 

triangular pairwise dissimilarity (1 – spearman’s rho) between each of the group-level RDMs. 1334 

Brighter colors indicate more dissimilarity. Bottom Right Panel: DTW figure showing movement 1335 

trajectory of one joint from one actor’s action time series (shown as red dots indicating locations) 1336 

with lines measuring similarity to the corresponding joint in another actor’s time series (shown as 1337 

green dots) to find the optimal decrease in dissimilarity over time.  1338 

 1339 

Fig 3. Behavioral results of identity recognition accuracy. Top: Self-recognition performance 1340 

for different actions color coded by action type (verbal instruction: gray; visual instruction: blue). 1341 

Light gray fill indicates bar plots for verbal instruction. Light blue fill indicates bar plot for visual 1342 

instruction. Inference bands denote 95% Bayesian highest density interval with 1000 iterations. 1343 

Horizontal blue line indicates chance-level recognition accuracy (.33). Bottom left panel: depicts 1344 

confusion matrix for each identity. No significant misattributions were found for the self relative 1345 

to other identities, though friend and stranger were more confused relative to the self (~55% 1346 

increase in misattributions for friend and strangers). Bottom right panel: average recognition 1347 

accuracy for each identity. All identities were recognized significantly above chance. Self actions 1348 

were recognized significantly better than friend actions. Light gray fill indicates bar plots. 1349 

Inference bands denote 95% Bayesian highest density interval with 1000 iterations. Horizontal 1350 

blue line indicates chance-level recognition accuracy (.33). * p < .05, ** p  <.01, *** p  <.001.   1351 

 1352 

 1353 

Fig 4. Group-level activity obtained using FSL’s non-parametric permutation approach 1354 

(randomise) with TFCE, p < .05. From Left to Right: Self v baseline; friend v baseline; and 1355 

stranger v baseline.   1356 

+ Large cluster sizes were obtained with TFCE due to the optimal cluster-defining threshold; 1357 

hence cluster peaks are reported with visual interpolation using manual thresholding with a 1358 

sliding scale. Abbreviations: Inferior Frontal Cortex (IFC); Superior Temporal Sulcus (STS); 1359 

Lateral Occipital Cortex (LOC); Supplementary Motor Area (SMA); Supramarginal Gyrus (SMG); 1360 

Angular Gyrus (Ang).  1361 

 1362 

Fig 5. Univariate group-level activity for self > stranger (left) and self > friend (right) using 1363 
the FSL randomise permutation approach, cluster corrected with TFCE (p < .05).  Violin plot 1364 
shows mean parameter estimates (PE) for the left posterior supramarginal gyrus (SMG) for all 1365 
identities. The left SMG significantly discriminated contrasts of PE for both self vs stranger (p = 1366 
.001) and self vs friend (p = .005), but not friend vs stranger (p = .821). Extended Data Figures 1367 
5-1 and 5-3 report the activity maps and peak clusters for both TFCE contrasts, as well as RFT 1368 
cluster-corrected results (Figures 5-2 and 5-5). 1369 
 1370 
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Fig 6. Task-modulated functional connectivity of left and right IPL. Left IPL (top panel) 1371 

seed showed increased connectivity with bilateral occipito-temporal regions, bilateral superior 1372 

and inferior parietal areas, and bilateral inferior frontal cortex during self > stranger. For self > 1373 

friend, functional connectivity analysis revealed greater connectivity with the bilateral inferior 1374 

frontal cortices and occipito-temporal regions. Task-modulated functional connectivity of the 1375 

right IPL (bottom panel) showed a similar activity pattern to the left: strengthened fronto-parietal 1376 

and parieto-occipital connectivity for both contrasts. All activity cluster corrected at Z > 2.3, p < 1377 

.01. Abbreviations: IPL (Inferior Parietal Lobule), IPS (Intraparietal Sulcus), IFC (Inferior Frontal 1378 

Cortex), OT (Occipito-Temporal Regions), EBA (Extrastriate Body Area),  STS (Superior 1379 

Temporal Sulcus).  1380 

 1381 

Fig 7. Multiple regression searchlight RDA results for motor familiarity. This figure 1382 
depicts the z-transformed activity map for significant correlations between the motor 1383 
familiarity RDM and the neural RDM based on activity patterns for actions (self encoded as 1384 
least dissimilar, with action separation to account for motor familiarity between action types; 1385 
friend as medium dissimilarity, stranger as most), after accounting for speed and movement 1386 
distinctiveness (DTW). Activation map reflects brain activity after 10000 non-parametric 1387 
Monte Carlo simulations, using TFCE and p < 0.01. Regions: bilateral somato-motor cortex: 1388 
primary motor cortex, primary somatosensory cortex, superior parietal lobule; frontoparietal 1389 
cortex:  inferior parietal lobule, inferior frontal cortex, medial prefrontal cortex; occipito-1390 
temporal cortex: inferior temporal cortex, superior temporal sulcus and gyrus. All activity 1391 
patterns are reported in Extended Data Table 7-1. 1392 

Fig 8. Multiple regression searchlight RDA results for each identity (self, friend, stranger). 1393 

Activation maps reflect TFCE-corrected brain activity after 10000 non-parametric Monte Carlo 1394 

simulations, p < 0.01 for self and friend; p < .05 for stranger. Dissimilarity matrices reflect 1395 

dissimilarity based on identity across all actions. Regions: Frontoparietal: Inferior Parietal lobule; 1396 

Superior Frontal Gyrus, lateral and medial prefrontal cortices. Somatomotor: Primary Motor 1397 

Cortex (M1), Primary Somatosensory Cortex (S1). Occipito-Temporal: Superior Temporal 1398 

Sulcus,  Middle Temporal Gyrus, Extrastriate Body Area. Activity patterns are reported in 1399 

Extended Data Tables 8-1, 8-2, 8-3, 8-4 and Figure 8-1.  1400 

 1401 

Fig 9. Multiple regression searchlight RDA results for self identity, regressing out motor 1402 

responses. Activation maps reflect TFCE-corrected brain activity after 10000 non-parametric 1403 

Monte Carlo simulations, p< 0.01 for self. Dissimilarity matrix reflects dissimilarity based on self- 1404 

identity across all actions. Regions: Frontoparietal: Inferior Parietal lobule; Superior Frontal 1405 

Gyrus, lateral and medial prefrontal cortices. Somatomotor: Primary Motor Cortex (M1), Primary 1406 

Somatosensory Cortex (S1). Occipito-Temporal: Superior Temporal Sulcus,  Middle Temporal 1407 

Gyrus, Extrastriate Body Area. Activity patterns are reported in Extended Data Table 9-1. 1408 

 1409 
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